TIBCO Enterprise Message
Service™

Application Integration Guide

Software Release 4.3
February 2006

WiTIBCO

The Power of Now?®

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH
EMBEDDED OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY
(OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE.
THE EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY
ANY OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND
CONDITIONS OF A LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED
SOFTWARE LICENSE AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT,
THE CLICKWRAP END USER LICENSE AGREEMENT WHICH IS DISPLAYED DURING
DOWNLOAD OR INSTALLATION OF THE SOFTWARE (AND WHICH IS DUPLICATED IN
TIBCO ENTERPRISE MESSAGE SERVICE USER’S GUIDE). USE OF THIS DOCUMENT IS
SUBJECT TO THOSE TERMS AND CONDITIONS, AND YOUR USE HEREOF SHALL
CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document contains confidential information that is subject to U.S. and international copyright
laws and treaties. No part of this document may be reproduced in any form without the written
authorization of TIBCO Software Inc.

TIB, TIBCO, Information Bus, The Power of Now, TIBCO ActiveEnterprise, TIBCO Adapter, TIBCO
Hawk, TIBCO Rendezvous, TIBCO Enterprise, TIBCO Enterprise Message Service, and the TIBCO
logo are either registered trademarks or trademarks of TIBCO Software Inc. in the United States
and/or other countries.

EJB, J2EE, JMS and all Java-based trademarks and logos are trademarks or registered trademarks of
Sun Microsystems, Inc. in the U.S. and other countries.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only.

This software may be available on multiple operating systems. However, not all operating system
platforms for a specific software version are released at the same time. Please see the readme.txt file
for the availability of this software version on a specific operating system platform.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO
SOFTWARE INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S)
AND/OR THE PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY TIME.

Copyright © 1999-2006 TIBCO Software Inc. ALL RIGHTS RESERVED.
TIBCO Software Inc. Confidential Information

Contents
FIQUIES .. e e e e iX
TADlES .o Xi
PrefaCe . . xiii
Related DOCUMENTALIONottt et e e e e e e e Xiv
TIBCO Enterprise Message Service Documentation it e iii e Xiv
Other TIBCO Product DOCUMENTALIONottt et et et e e e e e Xiv
Third Party DOCUMENtAtioN.ot e e e e e e e Xiv
How to Contact TIBCO CUSIOMEr SUPPOIT o ottt et e e et e e e e e e Xvi
Chapter 1 Using JNDI With Third-Party Naming/Directory Services. 1
Overview of Using JNDI With Third-Party Naming/Directory Services 2
Storing Administered Objects in @ Naming/Directory ServiCe 3
Retrieving Administered Objects from a Naming/Directory Service. i 7
Chapter 2 Overview of Third-Party Application Servers 9
Third Party Application Servers e 10
Chapter 3 Integrating With JB0OSS 4.0.2 e 11
Overview of Integrating With JB0OSS 4.0.2 oot e e e e e 12
Get the Example MDB Working Using JBOSSMQo e 13
Get the Example MDB Working Using TIBCO Enterprise Message Service., 16
Modify the Example to use SSL CommuUNICatIONS. it e e e 20
Adding the SSL JAR Files to the CLASSPATH for the JBosS Server. i, 20
Configuring the TIBCO Enterprise Message Service Serverfor SSL. 20
Configuring JBoss for SSL-based JMS Communications.« .ttt 21
Stop and restart the JBOSS SEIVE.ottt e e 22
Adding the SSL JAR Files to the CLASSPATH for the Client Program 22
Adding the SSL JNDI Properties for the Client Program i 22
Modify and Rebuild the Client. 23
Re-Run the Client Program 23
Container-Managed Transactions (XA)ttt e e 24

TIBCO Enterprise Message Service Application Integration Guide

iv | Contents

Chapter 4 Integrating With JB0SS 3.2.3 e 25
Overview of Integrating With JBOSS 3.2.3 e 26
Get the Example MDB Working Using JBOSSMQttt e e e 27
Get the Example MDB Working Using TIBCO Enterprise Message Service 30
Modify the Example to use SSL ComMMUNICALIONSottt e et e e e 34
Adding the SSL JAR Files to the CLASSPATH for the JBOSS Serverc.uiiiieeiinnenn.. 34
Configuring the TIBCO Enterprise Message Service Serverfor SSL i, 34
Configuring JBoss for SSL-based JMS Communicationsttt e 35
Stop and restart the JBOSS SEIVETottt e e 36
Adding the SSL JAR Files to the CLASSPATH for the Client Program 36
Adding the SSL JNDI Properties for the Client Program i e 36
Modify and Rebuild the Client e 37
Re-Runthe Client Program e e e e e e 37
Container-Managed Transactions (XA). oottt e e e 38
Chapter 5 Integrating With JB0SS 3.0.4 e 39
Overview of Integrating With JB0OSS 3.0.4o e e 40
Get the Example MDB Working Using JBOSSMQttt e e e e 41
Get the Example MDB Working Using TIBCO Enterprise Message Service 45
Modify the Example to use SSL ComMmMUNICALIONSottt e e et e e 49
Adding the SSL JAR Files to the CLASSPATH for the JBOSS Serverc.uiiiieeiineennn.. 49
Configuring the TIBCO Enterprise Message Service Serverfor SSL i, 49
Configuring JBoss for SSL-based JMS CommuNications ottt 50
Stop and restart the JBOSS SEIVETottt e e 51
Adding the SSL JAR Files to the CLASSPATH for the Client Program 51
Adding the SSL JNDI Properties for the Client Program e 51
Modify and Rebuild the Client e 52
Re-Runthe Client Program e e e e e 52
Container-Managed Transactions (XA). oottt e e 53
Chapter 6 Integrating With Borland Enterprise Server 5.1. 55
Configure Borland Enterprise Server to use TIBCO Enterprise Message Service, 56
Configure TIBCO Enterprise Message Service for the Example Program 59
Configure Borland Enterprise Server for the Example Message DrivenBean 60
Using Container-Managed XA Transactionsottt e e e e e 60
Using XA Transactions That Are Not Container-Managed 62
Building and Deploying the Example MDB and the Example Client. 64
RUNNINg This EXample e e e e 65
Modifying This Example to use SSL CommUNICAtIONSottt i e e e 66

TIBCO Enterprise Message Service Application Integration Guide

Contents | v

Chapter 7 Integrating With Borland Enterprise Server 5.0. it .. 69
Configure Borland Enterprise Server to use TIBCO Enterprise Message Service 70
Configure TIBCO Enterprise Message Service for the Example Program 73
Configure Borland Enterprise Server for the Example Message DrivenBean 74
Building and Deploying the Example MDB and the Example Client, 75
Running This EXample. e 76
Modifying This Example to use SSL COmmMUNICAtiONSttt e et e e e 77
Chapter 8 Integrating With WebLogic Server 8.1 it 81
Running the Example MDB with WebLogiC Server e e e e e 82
Configuring the Example MDB. 83
Adding TIBCO Enterprise Message Service to the WebLogic CLASSPATH 83
Creating Foreign JMSServer, IMSConnectionFactory, and JMSDestination in WebLogic 83
Creating the Example MDB Destination Object Inside TIBCOEMS 84
Modifying the weblogic-ejb-jar.xmlfile for MDB e 85
Modifying the Client Program to Use TIBCO Enterprise Message Service JNDI. 85
Rebuilding and Redeploying the Example MDB e e 87
Running the Example MDB Client e 88
Modifying this Example to Use SSL Communication. ot e e e e 89
Add the SSL JAR Files and New JNDI Properties File to the CLASSPATH. 89
Configure the TIBCO Enterprise Message Service Serverfor SSL 89
Modify the foreign JIMSConnectionFactory in WebLogic to point to an SSLConnectionFactory 20
Modify the Example Client Program for SSL-Based Communication. 20
Rebuilding and Redeploying the Example MDB. i e e e 20
Running the Example MDB Client with SSL. e e e e e e 91
Modifying this Example to use Container Managed Transactionsand XAo, 92
Modify the foreign IMSConnectionFactory in WebLogic to point to a XAConnectionFactory. 92
Create a JMS Connection factory that supports XA e 92
Modifying the WebLogic Deployment files to make MDB to use transactions 92
Chapter 9 Integrating With WebLogic Server 7.0 e 95
Running the Example MDB with WebLogiC Server e e e e e 96
Configuring the Example MDB. 97
Adding TIBCO Enterprise Message Service to the WebLogic Server CLASSPATH 97
Modifying the MDB Deployment Descriptor for TIBCO Enterprise Message Service. 97
Modifying the Client Program to Use TIBCO Enterprise Message Service JNDI. 98
Creating the Example MDB Destination Object Inside TIBCOEMS 929
Rebuilding and Redeploying the Example MDB e 100
Running the Example MDB Client e 101
Modifying this Example to Use SSL Communication.ttt e e 102

TIBCO Enterprise Message Service Application Integration Guide

Vi

Contents
Add the SSL JAR Files and New JNDI Properties File to the CLASSPATH 102
Configure the TIBCO Enterprise Message Service Serverfor SSL. 102
Configure Example MDB for SSL-Based Communication. 103
Modify the Example Client Program for SSL-Based Communication 103
Rebuilding and Redeploying the Example MDB e 103
Running the Example MDB Client with SSL e 104
Modifying this Example to use Container Managed Transactionsand XA oo, 105
Create a JMS Connection factory that supports XA. e e e 105
Modifying the Weblogic Deployment files to make MDB to use transactions 105
Chapter 10 Integrating With WebLogic Server 6.1 107
Using TIBCO Enterprise Message Service With WebLogic Server 108
Using TIBCO Enterprise Message Service with WebLogic Server Message Driven Beans. 114
Modifying This Example to use SSL CommuUNICationottt e e e 118
Chapter 11 Integrating With IBM WebSphere Application Server Version5.............. 121
Overview of Integrating With IBM WebSphere 122
Get the sample MDB running with the WebSphere Embedded JMS Provider 123
Get the Publish and Subscribe Sample Working.o e e e 123
Get the Point-to-Point Sample Working. 124
Get the Sample MDB running with TIBCO Enterprise Message Servicet .. 126
Create the TIBCO Enterprise Message Service Administered Objects. 126
Configure WebSphere for the TIBCO Enterprise Message Service JNDI Provider. 126
Add TIBCO Enterprise Message Service as a JMS Provider to the Application Server 126
Configure JNDI Bindings for TIBCO Enterprise Message Service Connection Factories for the Application
ST =T =T 127
Configure JNDI Bindings for TIBCO Enterprise Message Service Destinations for the Application Server 128
Create new Listener Ports for TIBCO Enterprise Message Service 129
Reassemble the Sample MDBs to Use the New TIBCO Enterprise Message Service Listener Ports 130
Redefine the Resource Reference and Resource Environment Reference for the Point-to-Point Sample MDB
131
Redefine the Resource Environment References in the Application Client Samples 132
Add TIBCO Enterprise Message Service as a JMS Provider to the Application Client. 133
Configure the JNDI bindings for TIBCO Enterprise Message Service Connection Factories for the Application
Gl Nt . L 134
Update the Deployed Application onthe Server e e 134
Run the Samples Application Client. e e e e e 136
Modify the Samples to Use SSL COmMMUNICAtIONSottt et 137
Enable SSL in the TIBCO Enterprise Message Service Server.t 137
Create JNDI Names for the SSL Queue and Topic Connection Factories. 137
Add the Additional SSL JNDI Properties to WebSphere 138
Configure SSL Communications Between the Application Server and the TIBCO Enterprise Message Service
T =T =T 138

TIBCO Enterprise Message Service Application Integration Guide

Contents

Configure SSL Communications between the Point-to-Point Sample MDB and the TIBCO Enterprise

MESSAQgE SEIVICE SOV L. . o o ittt e e e e e e 139
Configure SSL Communications between the Application Client and the TIBCO Enterprise Message Service
T = 140
Update the Deployed Application onthe Server. e 141
Run the Samples Application Client e 142
Chapter 12 Integrating With Sun Java System Application Server 7 143
Run the MDB Sample with Built-In IMS e 144
Run the MDB Sample with TIBCO EMS e e e e e e e 145
Configure Application SerVer e e 145
Register IMS Resources with Application Server i e e 145
RUNthe Sample e e 145
Run the MDB Sample with TIBCO EMS USINg SSL. e e 147
Configure the EMS Server e 147
Java Security PoliCY e 147
Configure Application Server 147
I X . 151

TIBCO Enterprise Message Service Application Integration Guide

Vii

viii | Contents

TIBCO Enterprise Message Service Application Integration Guide

ixX

Figures
Figure 1 Object lookup in TIBCO Enterprise Message ServiCe Server.t 3
Figure 2 Object created locally by the client. 5

TIBCO Enterprise Message Service Application Integration Guide

x | Figures

TIBCO Enterprise Message Service Application Integration Guide

Xi

Tables

Table 1 TIBCO Enterprise Message Service and WebLogic Server JMS implementations. 108

TIBCO Enterprise Message Service Application Integration Guide

xii | Tables

TIBCO Enterprise Message Service Application Integration Guide

Topics

Xiii

Preface

TIBCO Enterprise Message Service™ software lets application programs send and
receive messages according to the Java Message Service (JMS) protocol. It also
integrates with TIBCO Rendezvous and TIBCO SmartSockets message products.

This software may be available on multiple operating systems. However, not
all operating system platforms for a specific software version are released at the
same time. Please see the readme.txt file for the availability of this software
version on a specific operating system platform.

e Related Documentation, page xiv

* How to Contact TIBCO Customer Support, page xvi

TIBCO Enterprise Message Service Application Integration Guide

Xiv | Preface

Related Documentation

This section lists documentation resources you may find useful.

TIBCO Enterprise Message Service Documentation

The following documents form the TIBCO Enterprise Message Service
documentation set:

TIBCO Enterprise Message Service User’s Guide Read this manual to gain an
overall understanding of the product, its features, and configuration.

TIBCO Enterprise Message Service Installation Read the relevant sections of this
manual before installing this product.

TIBCO Enterprise Message Service Application Integration Guide This manual
presents detailed instructions for integrating TIBCO Enterprise Message
Service with third-party products.

TIBCO Enterprise Message Service C & COBOL API Reference The C API
reference is available in HTML and PDF formats.

TIBCO Enterprise Message Service Java API Reference The Java API reference is
available as JavaDoc, and you can access the reference only through the
HTML documentation interface.

TIBCO Enterprise Message Service NET API Reference The NET API reference
is available in PDF and HTML format.

TIBCO Enterprise Message Service Release Notes Release notes summarize new
features, changes in functionality, and closed issues. This document is
available only in PDF format.

Other TIBCO Product Documentation

You may find it useful to read the documentation for the following TIBCO
products:

TIBCO Rendezvous™ software

TIBCO SmartSockets™ software

Third Party Documentation

Java™ Message Service specification, available through
java.sun.com/products/jms/index.html

TIBCO Enterprise Message Service Application Integration Guide

Related Documentation | xv

® Java™ Message Service by Richard Monson-Haefel and David A. Chappell,
O’Reilly and Associates, Sebastopol, California, 2001.

® JBoss 3.2 Administration and Development Documentation by Scott Stark and
Marc Fleury and The JBoss Group, Que/Sams, 2003.

® JBoss 2.4 Administration and Development Documentation by Scott Stark and
Marc Fleury and The JBoss Group, Que/Sams, 2002.

TIBCO Enterprise Message Service Application Integration Guide

XVi | Preface

How to Contact TIBCO Customer Support

For comments or problems with this manual or the software it addresses, please
contact TIBCO Support Services as follows.

¢ For an overview of TIBCO Support Services, and information about getting
started with TIBCO Product Support, visit this site:

http:/ /www.tibco.com/services/support/default.jsp
¢ Ifyou already have a valid maintenance or support contract, visit this site:
http:/ /support.tibco.com

Entry to this site requires a username and password. If you do not have a
username, you can request one.

TIBCO Enterprise Message Service Application Integration Guide

Chapter 1

Topics

1

Using JNDI With Third-Party
Naming/Directory Services

TIBCO Enterprise Message Service™ allows you to work with third-party
naming/directory service products. This chapter describes how to integrate these
products with TIBCO Enterprise Message Service.

* Qverview of Using JNDI With Third-Party Naming/Directory Services, page 2
* Storing Administered Objects in a Naming/Directory Service, page 3
* Retrieving Administered Objects from a Naming/Directory Service, page 7

TIBCO Enterprise Message Service Application Integration Guide

2 | Chapter 1 Using JNDI With Third-Party Naming/Directory Services

Overview of Using JNDI With Third-Party Naming/Directory Services

TIBCO Enterprise Message Service supports the storage (binding) and retrieval
(look-up) of ConnectionFactories and Destinations in third-party naming or
directory services. Examples of such services are an LDAP server, the RMI
registry, or the file system.

Third-party naming or directory servers are separate products that must be
% installed and set up independently of TIBCO Enterprise Message Service. This is
usually done by a system administrator.

To use a third-party directory service, you must have a JNDI provider for that
specific type of service. A JNDI provider presents a common API to the service
regardless of the service type or service vendor, much like a JDBC driver presents
a common API on top of various vendors’ databases.

The Java 2 SDK, contains JNDI providers for LDAP and RMI registry, among
others. A JNDI provider for the file system can be downloaded from the JNDI
home page at java.sun.com.

From a client perspective, looking up administered objects is accomplished in
virtually the same way regardless of whether the object is in a third-party
naming/directory service or in the TIBCO Enterprise Message Service server. For
third-party services, the only prerequisite is that the objects must have previously
been stored there. That is, the object must be bound to a name in the context of
that service. This is usually a task performed by a system administrator.

There is no automatic synchronization of administered objects between the

% TIBCO Enterprise Message Service server and any foreign naming/directory
service. Keeping the two synchronized is the responsibility of the system
administrator.

TIBCO Enterprise Message Service Application Integration Guide

Storing Administered Objects in a Naming/Directory Service | 3

Storing Administered Objects in a Naming/Directory Service

All TIBCO Enterprise Message Service administered objects implement the JNDI
“Referenceable” interface. This means that when they are bound in a foreign
naming/directory service, what is physically stored there is not the serialized
object itself, but rather a “Reference” object that knows how to re-create the
original object when the object is looked up.

There are two forms of Reference objects that are stored, and which form is used
depends on the origin of the original object. If the original object was looked up in
the TIBCO Enterprise Message Service server, then the Reference object that gets
stored for the object contains a URL pointer to the originating server. When this
object is looked up in the foreign naming/directory service, the JNDI provider
follows the associated URL and retrieves the object from the TIBCO Enterprise
Message Service server. Figure 1 illustrates this case.

Figure 1 Object lookup in TIBCO Enterprise Message Service server

Client 1
TIBCO JNDI Third-Party
Provider JNDI Provider
L2l T @) bind (object)
object
TIBCOEMS Server | €7~ —=~_ Third-Party Naming/
~ o Directory Service
N
AN
(&) 0
Rlookup r'ef/ e
object lookup
TIBCO JNDI Third-Party
URL JNDI Provider
ContextFactory
Client 2

In Figure 1, the following occurs:

TIBCO Enterprise Message Service Application Integration Guide

4 | Chapter 1 Using JNDI With Third-Party Naming/Directory Services

7.

Client 1 requests a lookup of an object in TIBCO Enterprise Message Service
server by way of the JNDI provider supplied in TIBCO Enterprise Message
Service.

The TIBCO Enterprise Message Service server returns the object to Client 1.

Client 1 binds the object into a third-party service using a third-party JNDI
provider. The object is stored as a URL reference to the actual object in the
TIBCO Enterprise Message Service server.

Client 2 requests a lookup of an object in the third-party service using the
third-party JNDI provider.

The URL reference is returned by the third-party JNDI provider.

JNDI realizes that this is a reference, and further that it is a URL reference to
the TIBCO Enterprise Message Service server. Therefore, it invokes the URL
context factory of the TIBCO Enterprise Message Service JNDI provider which
requests a lookup of the object in the TIBCO Enterprise Message Service
server.

The TIBCO Enterprise Message Service server returns the object to Client 2.

If however, the object was created locally by the client using the public
constructor of the class, then the Reference object that is stored for the object
contains whatever information is required to re-create the object locally. When
this object is subsequently looked up in the foreign naming/directory service, the
JNDI provider uses the information stored in the Reference object to instantiate
the original object locally. All of this behavior happens automatically without any
special interaction required of the client. Figure 2 illustrates this case.

TIBCO Enterprise Message Service Application Integration Guide

Storing Administered Objects in a Naming/Directory Service

Figure 2 Object created locally by the client

Client 1

"new Object"

Third-Party JNDI Provider

TIBCO EMS Server

bind (object)

Third-Party Naming/
Directory Service

ref

TIBCO JNDI

Factories

JNDI Provider

Object 64__ Third-Party
|

v

Client2

object

lookup

In Figure 2, the following occurs:

1. Client 1 creates a new administered object using the constructor of the class.

2. Client 1 binds the object into the third-party service using the third-party

JNDI provider. The object is stored as a local reference.

3. Client 2 requests a lookup of the object in the third-party service using the

third-party JNDI provider

4. The local reference is returned to the third-party JNDI provider.

5. JNDlI realizes that this is a local reference, and invokes the TIBCO Enterprise
Message Service JNDI object factory associated with the reference, which

creates a new instance of the object locally and returns it to Client 2.

This behavior occurs automatically without any special interaction from the

client.

TIBCO Enterprise Message Service Application Integration Guide

5

6 | Chapter 1 Using JNDI With Third-Party Naming/Directory Services

Storing objects as a URL reference requires that the TIBCO Enterprise Message
Service server be up and running (at the same URL) when the object is looked up
in the foreign naming/directory service. Storing objects created locally does not
have this requirement, however, because there is no automatic synchronization
between the foreign naming/directory service and the TIBCO Enterprise Message
Service server. There is no guarantee that the object returned from a lookup is
valid, that is, that it exists inside the TIBCO Enterprise Message Service server.
Storing objects as a URL reference ensures that the returned object is always a
valid object.

For an example of storing administered objects in both of these forms, refer to the
tibjmsINDIStore.java example included with TIBCO Enterprise Message
Service.

All TIBCO Enterprise Message Service administered objects implement the
javax.naming.Referenceable interface. Therefore, these objects cannot be
directly bound, along with a javaCodebase attribute, into a directory service that
follows the schema defined in RFC 2713, and subsequently looked up with a
service provider that uses the javaCodebase attribute (such as Sun's LDAP
service provider). To successfully look up a TIBCO Enterprise Message Service
administered object bound with the javaCodebase attribute, the object must first
be manually serialized, then the serialized object can be directly bound into the
directory service.

TIBCO Enterprise Message Service Application Integration Guide

Retrieving Administered Objects from a Naming/Directory Service | 7

Retrieving Administered Objects from a Naming/Directory Service

In order to retrieve (look up) administered objects from a foreign
naming/directory service, an initial context must be established for that service.
The following example illustrates how to create an initial context using the Sun
LDAP JNDI provider for an LDAP server running on the local machine, listening
on port 20329, where the root naming context is myJMSObjects:

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_ FACTORY,
"com.sun.jndi.ldap.LdapCtxFactory");
env.put(Context.PROVIDER_URL,
"ldap://localhost:20329/0o=myJMSObjects");
Context context = new InitialContext(env);

Once the context is established, retrieving (looking up) administered objects from
a foreign naming/directory service is accomplished no differently than with the
TIBCO Enterprise Message Service server. However, there is one exception — two
properties must be added to the context object that inform the JNDI provider
where to find the object factories for the TIBCO Enterprise Message Service
administered objects. The JNDI provider invokes these factories when any of the
objects are retrieved. The properties are responsible for locating the factories that
create the appropriate instances of the desired objects for the user.

The following example illustrates setting these properties. If the variable "context"
contains the initial context for the foreign naming/directory service, then these
properties would be set with the following two lines:

context.addToEnvironment (Context.OBJECT FACTORIES,
"com.tibco.tibjms.naming.TibjmsObjectFactory");

context.addToEnvironment (Context.URL_PKG_PREFIXES,
"com.tibco.tibjms.naming");

Once these properties are set, then the "lookup” method of the context can be used
to retrieve any object stored in that context.

For an example of retrieving administered objects from a foreign
naming/directory service, see the tibjmsINDIRead. java example included with
TIBCO Enterprise Message Service.

TIBCO Enterprise Message Service Application Integration Guide

8 | Chapter 1 Using JNDI With Third-Party Naming/Directory Services

TIBCO Enterprise Message Service Application Integration Guide

|9

Chapter2 ~ Overview of Third-Party Application Servers

TIBCO Enterprise Message Service successfully integrates with third-party J2EE
EJB (application) servers so that TIBCO Enterprise Message Service can drive
Message Driven Beans (MDBs) within the application servers. This chapter gives
an overview of this integration.

Topics

® Third Party Application Servers, page 10

TIBCO Enterprise Message Service Application Integration Guide

10 | Chapter 2 Overview of Third-Party Application Servers

Third Party Application Servers

Third party servers which have been tested with TIBCO Enterprise Message
Service are:

* JBoss 3.2.3 and 3.0.4 from JBoss.org

¢ Borland Enterprise Server 5.1 from Borland

* WebLogic 8.1, 7.0 and 6.1 with Service Pack 1 from BEA
¢ IBM WebSphere Application Server Version 5

* SunJava System Application Server 7

Integration with other application servers is possible, although it has not been
tested.

TIBCO Enterprise Message Service successfully integrates with third party J2EE
EJB (application) servers so that TIBCO Enterprise Message Service can drive
Message Driven Beans (MDBs) within the application servers.

TIBCO Enterprise Message Service implements the ConnectionConsumer
interface of the JMS specification for application servers that follow the JMS
specification for JMS integration. The application servers listed above that use this
interface are Borland Enterprise Server and JBoss.

TIBCO Enterprise Message Service also implements all interfaces necessary for
Java Transaction API (JTA) compliance.

Special TIBCO Enterprise Message Service adapter classes are required for
integration with some of the above listed application servers. These classes are
contained in a separate JAR file included with this release, tibjmsapps. jar.

The following chapters contain more detailed instructions on how to integrate
TIBCO Enterprise Message Service with each of the above listed application
servers. Each chapter details how to run an example program provided by the
application server using TIBCO Enterprise Message Service. When applicable,
each chapter also describes how to modify the example to use SSL for
communications between TIBCO Enterprise Message Service, the application
server, and the example application.

TIBCO Enterprise Message Service Application Integration Guide

Chapter 3

Topics

11

Integrating With JBoss 4.0.2

This chapter describes integrating TIBCO Enterprise Message Service with the
JBoss J2EE application server, version 4.0.2. Specifically, you can use TIBCO
Enterprise Message Service to drive a Message Driven Bean (MDB) inside JBoss
from any EMS client.

* Qverview of Integrating With JBoss 3.2.3, page 26

* Get the Example MDB Working Using JBossMQ, page 27

® Get the Example MDB Working Using TIBCO Enterprise Message Service, page 30
* Modify the Example to use SSL Communications, page 34

* Container-Managed Transactions (XA), page 38

TIBCO Enterprise Message Service Application Integration Guide

12 | Chapter 3 Integrating With JBoss 4.0.2

Overview of Integrating With JBoss 4.0.2

This chapter describes integrating TIBCO Enterprise Message Service with the
JBoss J2EE application server, version 4.0.2. Specifically, you can use TIBCO
Enterprise Message Service to drive a Message Driven Bean (MDB) inside JBoss
from any EMS client.

The techniques described in this chapter assume you are using Windows 2000,
and that you have already downloaded and installed JBoss 4.0.2. It further
assumes that you are running JBoss, the TIBCO Enterprise Message Service
server, and the client program on the same machine.

Throughout the following procedures, environment variables are used to refer to
specific directories within the JBoss installation. They are not actually needed by
the JBoss server, but merely facilitate the reference to different directories in the
JBoss installation.

The following environment variables are used throughout the discussion below:

JBOSS_HOME = C:\JBoss-4.0.2

JBOSS_CLIENT = %JBOSS_HOME%\client

JBOSS_DEPLOY = %JBOSS_HOME%\server\default\deploy
JBOSS_CONF = %JBOSS_HOME%\server\default\conf

The example in this chapter configures an MDB that uses container-managed
% transactions. For more information, see Container-Managed Transactions (XA) on
page 53.

TIBCO Enterprise Message Service Application Integration Guide

Get the Example MDB Working Using JBossMQ

Get the Example MDB Working Using JBossMQ

1. To build the example MDB, add the following to your CLASSPATH:
%JBOSS_CLIENT%\jboss-j2ee.jar

2. Compile the example MDB, TextMDB. java. The source code for this example
is located in JBoss Administration and Development, Chapter 4, Example 2.

3. Create a directory named META-INF in the output directory that now contains
the org.jboss.chap4.ex2.TextMDB.class.

4. Copy the files ejb-jar.xml and jboss.xml from the source directory
associated with Example 2 of Chapter 4 of [Boss Administration and
Development, to the META-INF directory.

5. Create the EJB jar file by changing directories to the output directory and
issuing the following command:

jar cvf myejb.jar META-INF org\jboss\chap4\ex2\TextMDB.class
6. Map Connection Factory Names

In JBoss 4.0.2, the JNDI names QueueConnectionFactory and
TopicConnectionFactory do not come pre-mapped to the internal JBoss
connection factory called ConnectionFactory. Therefore you must add this
mapping in order to use the example MDB without modification. The
mapping must be configured by adding the following lines in the file
%JBOSS_DEPLOY%\jms\jbossmg-service.xml:

<!-- -—>
<!-- JBossMQ -——>
<!-- -—>

<mbean code="org.jboss.naming.NamingAlias"

name="DefaultDomain: service=NamingAlias, fromName=QueueConnectionFactory">
<attribute name="ToName">ConnectionFactory</attribute>
<attribute name="FromName'">QueueConnectionFactory</attribute>

</mbean>

<mbean code="org.jboss.naming.NamingAlias"

name="DefaultDomain: service=NamingAlias, fromName=TopicConnectionFactory">
<attribute name="ToName">ConnectionFactory</attribute>
<attribute name="FromName">TopicConnectionFactory</attribute>

</mbean>

7. Start the JBoss server by changing to the %7BOSS_HOME%\bin directory and
issuing the following command:

run
8. Copy myejb.jar to %TBOSS_DEPLOY%.

9. In the JBoss window, you should see output similar to the following;:

TIBCO Enterprise Message Service Application Integration Guide

13

14 | Chapter 3 Integrating With JBoss 4.0.2

19:35:33,343 INFO [org.jboss.deployment.MainDeployer] Starting deployment of
package: file:/C:/jboss-4.0.2/server/default/deploy/myejb.jar

19:35:34,296 INFO [org.jboss.ejb.EjbModule] Deploying TextMDB

19:35:34,875 INFO [org.jboss.ejb.plugins.jms.DLQHandler] Started null

19:35:34,875 INFO [org.jboss.ejb.plugins.jms.JMSContainerInvoker] Started
jboss.j2ee:binding=message-driven-bean, jndiName=local/TextMDB, plugin=invoker, serv
ice=EJB

19:35:34,875 INFO [org.jboss.ejb.plugins.MessageDrivenInstancePool] Started
jboss.j2ee:jndiName=1local/TextMDB, plugin=pool, service=EJB

19:35:34,875 INFO [org.jboss.ejb.MessageDrivenContainer] Started
jboss.j2ee:jndiName=1local/TextMDB, service=EJB

19:35:34,875 INFO [org.jboss.ejb.EjbModule] Started
jboss.j2ee:module=myejb.jar,service=EjbModule

19:35:34,875 INFO [org.jboss.ejb.EJBDeployer] Deployed:
file:/C:/jboss-4.0.2/server/default/deploy/myejb. jar

19:35:34,968 INFO [org.jboss.deployment.MainDeployer] Deployed package:
file:/C:/jboss-4.0.2/server/default/deploy/myejb. jar

10. To build the client program, make sure the following are in your CLASSPATH:

%JBOSS_CLIENT%\jboss-j2ee.jar
%JBOSS_CLIENT%\concurrent.jar

11. Compile the client program, org. jboss.chap4.ex2.SendRecvClient. java

The source to this program is listed in the book JBoss Administration and
Development.

12. To run the client program, add the following to your CLASSPATH:

%JBOSS_CLIENT%\jnp-client. jar
%JBOSS_CLIENT%\jbossmg-client.jar
%JBOSS_CLIENT%\jboss-common-client.jar
%JBOSS_CLIENT%\jnet.jar
%JBOSS_CLIENT%\1log4j.jar
%JBOSS_CLIENT%

The %JBOSS_CLIENT% directory is included so that the file jndi.properties
in that directory can be found (see the next step).

13. In JBoss 4.0.2, a jndi .properties file does not come pre-configured for the
client, therefore, you will have to create one. The easiest way is to first copy
jndi.properties from %JBOSS_CONF% to %TJBOSS_CLIENT%. Then add the
following line in the copied file:

java.naming.provider.url=localhost
14. Run the client program:
java org.jboss.chap4.ex2.SendRecvClient
You should see output like the following in the client program window:

Begin sendRecvAsync
sendRecvAsync, sent text=A text msg#0
sendRecvAsync, sent text=A text msg#l

sendRecvAsync, sent text=A text msg#8
sendRecvAsync, sent text=A text msg#9

TIBCO Enterprise Message Service Application Integration Guide

Get the Example MDB Working Using JBossMQ | 15

End sendRecvAsync

onMessage, recv text=A text msg#Oprocessed by: 3824284
onMessage, recv text=A text msg#3processed by: 32953059
onMessage, recv text=A text msg#6processed by: 32420722
onMessage, recv text=A text msg#8processed by: 23916456

You should also see output like the following in the JBoss server console:

TIBCO Enterprise Message Service Application Integration Guide

125,046 INFO [STDOUT] TextMDB.ctor, this=3824284

:25,078 INFO [STDOUT] TextMDB.setMessageDrivenContext, this=3824284

125,078 INFO [STDOUT] TextMDB.ejbCreate, this=3824284

:25,109 INFO [STDOUT] TextMDB.ctor, this=2003839

:25,109 INFO [STDOUT] TextMDB.setMessageDrivenContext, this=2003839

:25,109 INFO [STDOUT] TextMDB.ejbCreate, this=2003839

25,109 INFO [STDOUT] TextMDB.ctor, this=30170403

:25,125 INFO [STDOUT] TextMDB.setMessageDrivenContext, this=30170403
:25,125 INFO [STDOUT] TextMDB.ejbCreate, this=30170403

125,109 INFO [STDOUT] TextMDB.ctor, this=32953059

:25,140 INFO [STDOUT] TextMDB.setMessageDrivenContext, this=32953059
125,140 INFO [STDOUT] TextMDB.ejbCreate, this=32953059

125,125 INFO [STDOUT] TextMDB.ctor, this=31834937

:25,156 INFO [STDOUT] TextMDB.setMessageDrivenContext, this=31834937
125,156 INFO [STDOUT] TextMDB.ejbCreate, this=31834937

125,187 INFO [STDOUT] TextMDB.onMessage, this=3824284

125,187 INFO [STDOUT] TextMDB.sendReply, this=3824284, dest=QUEUE.A

:25,125 INFO [STDOUT] TextMDB.ctor, this=13863286

125,203 INFO [STDOUT] TextMDB.setMessageDrivenContext, this=13863286
125,203 INFO [STDOUT] TextMDB.ejbCreate, this=13863286

:25,203 INFO [STDOUT] TextMDB.onMessage, this=32953059

:25,218 INFO [STDOUT] TextMDB.sendReply, this=32953059, dest=QUEUE.A
125,234 INFO [STDOUT] TextMDB.onMessage, this=3824284

125,234 INFO [STDOUT] TextMDB.sendReply, this=3824284, dest=QUEUE.A

125,218 INFO [STDOUT] TextMDB.ctor, this=32420722

:25,250 INFO [STDOUT] TextMDB.setMessageDrivenContext, this=32420722
125,250 INFO [STDOUT] TextMDB.ejbCreate, this=32420722

125,296 INFO [STDOUT] TextMDB.ctor, this=23916456

125,296 INFO [STDOUT] TextMDB.setMessageDrivenContext, this=23916456
125,296 INFO [STDOUT] TextMDB.ejbCreate, this=23916456

:25,312 INFO [STDOUT] TextMDB.onMessage, this=31834937

:25,312 INFO [STDOUT] TextMDB.sendReply, this=31834937, dest=QUEUE.A
:25,328 INFO [STDOUT] TextMDB.onMessage, this=2003839

125,328 INFO [STDOUT] TextMDB.sendReply, this=2003839, dest=QUEUE.A

125,296 INFO [STDOUT] TextMDB.onMessage, this=32953059

125,343 INFO [STDOUT] TextMDB.sendReply, this=32953059, dest=QUEUE.A
125,343 INFO [STDOUT] TextMDB.onMessage, this=13863286

125,343 INFO [STDOUT] TextMDB.sendReply, this=13863286, dest=QUEUE.A
125,328 INFO [STDOUT] TextMDB.onMessage, this=30170403

125,343 INFO [STDOUT] TextMDB.sendReply, this=30170403, dest=QUEUE.A
125,375 INFO [STDOUT] TextMDB.onMessage, this=32420722

:25,375 INFO [STDOUT] TextMDB.sendReply, this=32420722, dest=QUEUE.A
125,421 INFO [STDOUT] TextMDB.onMessage, this=23916456

125,421 INFO [STDOUT] TextMDB.sendReply, this=23916456, dest=QUEUE.A

16 | Chapter 3 Integrating With JBoss 4.0.2

Get the Example MDB Working Using TIBCO Enterprise Message

Service

This example MDB uses container-managed transactions. For more information,
see Container-Managed Transactions (XA) on page 53.

&

1. Start the tibemsd server and the tibemsadmin console.

Queues and 2. Create three queues (queue/A, queue/B and queue/DLQ) and two XA

Connection connection factories (XAQueueConnectionFactory and
Factories XATopicConnectionFactory), by entering the following commands in
tibemsadmin:
connect

create queue queue/A

create queue queue/B

create queue queue/DLQ

create factory XAQueueConnectionFactory xaqueue url=tcp://7222
create factory XATopicConnectionFactory xatopic url=tcp://7222

VVVYVVYV

3. Make a backup copy (in a separate directory) of the configuration files that
will be changed:
%JBOSS_DEPLOY%\jms\jms-ds.xml
%JBOSS_CONF%\jboss-service.xml

%JBOSS_CONF%\standardjboss.xml
<mdb output>\META-INF\ jboss.xml

You should copy the files in the %JB0SS_DEPLOY% directory to another
% directory, rather than rename the files in place. JBoss attempts to deploy all
files in that directory, regardless of name or file extension.

4. Add TIBCO EMS and the TIBCO EMS adapter class for JBoss to the
CLASSPATH of the JBoss server by modifying the file
%JBOSS_CONF%\ jboss-service.xml as described below. Substitute an
appropriate JAR file CLASSPATH for your installation.

Add the following lines under the <server> element in the file
%JBOSS_CONF%\ jboss-service.xml:

<!-- TIBCO Enterprise Message Service classpath -->
<classpath codebase="file:/C:\TIBCO\EMS\clients\java"
archives="tibjms.jar" />

TIBCO Enterprise Message Service Application Integration Guide

Get the Example MDB Working Using TIBCO Enterprise Message Service

5. Reconfigure the JMSProviderLoader mbean to load TIBCO Enterprise
Message Service instead of JBoss MQ. To do so, edit the file
%JBOSS_DEPLOY%\ jms\jms-ds.xml to resemble these lines:

<!-- The JMS provider loader -->
<mbean code="org.jboss.jms.jndi.JMSProviderLoader"

name=":service=JMSProviderLoader,name=TibjmsProvider">
<attribute name="ProviderName">TIBCOJMSProvider</attribute>
<attribute

name="ProviderAdapterClass">org.jboss.jms.jndi.JNDIProviderAdapter</attribute>
<attribute name="QueueFactoryRef">XAQueueConnectionFactory</attribute>
<attribute name="TopicFactoryRef">XATopicConnectionFactory</attribute>
<attribute name="Properties">
java.naming.security.principal=jbosslookup
java.naming.security.credentials=jbosslookup
java.naming.factory.initial=com.tibco.tibjms.naming.TibjmsInitialContextFactory
java.naming.factory.url.pkgs=com.tibco.tibjms.naming
java.naming.provider.url=tibjmsnaming://localhost:7222
</attribute>
</mbean>

6. When the sample MDB looks up the QueueConnectionFactory (in order to
create a QueueSender to send a message back to the initiator), it looks it up as
java:comp/env/jms/QCF.BecausevvevvanttheQueueConnectionFactory
object that is returned from the lookup to be a TIBCO Enterprise Message
Service XAQueueConnectionFactory, we must store a JNDI LinkRef under
that name in the JBoss JNDI implementation that points to the
XAQueueConnectionFactory in the TIBCO Enterprise Message Service
implementation. Adding the following lines in
%JBOSS_DEPLOY%\jms\jms-ds.xml accomplishes this.

<!-- Redirect QueueConnectionFactory to TIBCO Enterprise Message Service -->
<mbean code="org.jboss.naming.NamingAlias"
name="DefaultDomain: service=NamingAlias, fromName=QueueConnectionFactory">
<attribute name="ToName">tibjmsnaming://localhost/XAQueueConnectionFactory
</attribute>
<attribute name="FromName'">QueueConnectionFactory</attribute>
</mbean>

7. When the sendRecvClient test program looks up the ConnectionFactory
referenced in the test program, it needs to be redirected to the appropriate
QueueConnectionFactory configured in EMS. Add the following lines in
%JBOSS_DEPLOY%\ jms\jms-ds.xml to accomplish this.

<mbean code="org.jboss.naming.NamingAlias"
name="DefaultDomain: service=NamingAlias, fromName=ConnectionFactory">
<attribute name="ToName">tibjmsnaming://localhost/QueueConnectionFactory
</attribute>
<attribute name="FromName">ConnectionFactory</attribute>
</mbean>

8. When the JBoss server invokes JNDI and encounters the tibjmsnaming
scheme, the server must be able to find the TIBCO Enterprise Message Service

TIBCO Enterprise Message Service Application Integration Guide

17

18 | Chapter 3 Integrating With JBoss 4.0.2

URLConnectionFactory. Therefore, modify the file
%JBOSS_CONF%\ jndi.properties as follows:

Change:

java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces

To

java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces:com.tibco.tibjms.n
aming

9. Inthe %JBOSS_CONF%\standardjboss.xml file, modify the following line.

Change:

<JMSProviderAdapterIJNDI>Defaul tIMSProvider
</JMSProviderAdapterJNDI>

To:

<JMSProviderAdapterJNDI>TIBCOJMSProvider
</JMSProviderAdapterJNDI>

This change sets "TIBCOTMSProvider" as the JMS Provider Adapter JNDI name.

10. In the %¥TBOSS_CONF%\standardjboss.xml file, modify the following line.

Change:

<DestinationQueue>queue/DLQ</DestinationQueue>

To:

<DestinationQueue>
tibjmsnaming://localhost/queue/DLQ
</DestinationQueue>

This change specifies the TIBCO Enterprise Message Service JNDI name for the
MDB Dead Letter Queue (DLQ) queue/DLQ.

11. Move the following files out of the %¥JBOSS_DEPLOY% directory. These files are
not needed when using TIBCO Enterprise Message Service and therefore
must not be deployed:

%JBOSS_DEPLOY%\jms\jbossmg-service.xml
%JBOSS_DEPLOY%\jms\jbossmg-destinations-service.xml

12. Stop the JBoss server, then it restart by entering:

run

TIBCO Enterprise Message Service Application Integration Guide

Get the Example MDB Working Using TIBCO Enterprise Message Service | 19

13. When the client program invokes JNDJ, it should use the TIBCO Enterprise
Message Service JNDI server. Modify %JBOSS_CLIENT%\jndi.properties to
use TIBCO Enterprise Message Service JNDI by setting the following
property:
java.naming.factory.initial=com.tibco.tibjms.naming.TibjmsInitialContextFactory
14. Add C:\TIBCO\EMS\clients\java\tibjms.jar to the CLASSPATH of the
client program.

15. Run the client program as you did in the previous section. You should see the
same output.

TIBCO Enterprise Message Service Application Integration Guide

20 | Chapter 3 Integrating With JBoss 4.0.2

Modify the Example to use SSL Communications

This section describes how to modify the above example to use SSL
communications between the TIBCO Enterprise Message Service server, JBoss,
and the client program. This section assumes you have already set up and run the
example detailed in the previous sections.

Adding the SSL JAR Files to the CLASSPATH for the JBoss Server

Add the TIBCO tibcrypt. jar file to the CLASSPATH of the JBoss server by
modifying the file ¥7BOSS_CONF%\jboss-service.xml as described below.
Substitute an appropriate JAR file CLASSPATH for your installation.

Add the following line under the <server> element in
%JBOSS_CONF%\ jboss-service.xml:

<classpath codebase="file:/C:\TIBCO\EMS\clients\java"
archives="tibcrypt.jar" />

Configuring the TIBCO Enterprise Message Service Server for SSL
1. Start tibemsd in the working directory C:\TIBCO\ems\bin as follows:
tibemsd -config tibemsdssl.conf

When tibemsd starts you should see messages like the following in the
console window, confirming SSL is enabled:

17:09:03 Secure Socket Layer is enabled, using OpenSSL 0.9.7c.
17:09:03 Accepting connections on tcp://localhost:7222.
17:09:03 Accepting connections on ssl://localhost:7243.
17:09:03 Server is active.

2. Start tibemsadmin (administration tool) and enter the following commands.

First, create a new XAQueueConnectionFactory that establishes SSL
connections:

create factory SSLXAQueueConnectionFactory xaqueue url=ssl://7243

Second, disable host verification for connections that this connection factory
creates:

setprop factory SSLXAQueueConnectionFactory ssl_verify host=disabled

This is the simplest SSL configuration.

TIBCO Enterprise Message Service Application Integration Guide

Modify the Example to use SSL Communications | 21

Configuring JBoss for SSL-based JMS Communications

There are two aspects to SSL communications between JBoss and the TIBCO EMS
server. The first is for messaging between the JBoss and TIBCO servers to occur
over SSL. The second is for JNDI lookups from JBoss to the TIBCO JNDI provider
to occur over SSL. The following two sections separately describe the required
steps for each.

JMS Messaging over SSL

1.

Modify the line you added to %JBOSS_DEPLOY%\ jms\jms-ds.xml in the
previous section (which specifies the QueueFactoryRef attribute of the J]MS
ProviderLoader) to be the be the new connection factory you just created
(which establishes SSL. connections):

<attribute name="QueueFactoryRef">
SSLXAQueueConnectionFactory
</attribute>

Modify the line you added to %JBOSS_DEPLOY%\ jms\jms-ds.xml in the
previous section so it creates the JNDI LinkRef ToName to the new SSL
connection factory—namely SSLXAQueueConnectionFactory (which you
created above):

<attribute name="ToName">

tibjmsnaming://localhost/SSLXAQueueConnectionFactory
</attribute>

JNDI Lookups over SSL

1.

In the file %$TBOSS_CONF%\jndi.properties, add the following lines:

com.tibco.tibjms.naming.security_protocol=ssl
com.tibco.tibjms.naming.ssl_enable_verify host=false

These properties specify the SSL protocol for JNDI lookups, and disable host
verification.

Add the following line in the JMSProviderLoader mbean in
%JBOSS_DEPLOY%\jms\jms-ds.xml:

<attribute name="ProviderUrl">
tibjmsnaming://localhost:7243</attribute>

The new line creates an additional attribute ProviderUrl, that explicitly
states the JNDI provider URL (rather than using the default built into the
TIBCO Enterprise Message Service JBoss adapter class) with a port number of
7243 for SSL. Note that attribute names are case sensitive and must be entered
exactly as shown above.

Modify the line you previously added to %¥7BOSS_DEPLOY%\ jms\jms-ds.xml
to explicitly specify the SSL port of 7243 in the JNDI LinkRef ToName:

TIBCO Enterprise Message Service Application Integration Guide

22 | Chapter 3 Integrating With JBoss 4.0.2

<attribute name="ToName">
tibjmsnaming://localhost:7243/SSLXAQueueConnectionFactory
</attribute>

Modify the line in file standardjboss.xml where you specified the TIBCO
Enterprise Message Service JNDI name of the DLQ to explicitly specify the
SSL port of 7243:

<DestinationQueue>tibjmsnaming://localhost:7243/queue/DLQ</DestinationQueue>

Stop and restart the JBoss server

You should see the same messages in the JBoss console during startup that you
saw in the previous section.

Adding the SSL JAR Files to the CLASSPATH for the Client Program

The following JAR files, distributed with TIBCO Enterprise Message Service,
must be added to the CLASSPATH of the client program, in the same manner that
you added the non-SSL jar files to the CLASSPATH in the previous example:

jcert.jar
jnet.jar
jsse.jar
tibcrypt. jar

Adding the SSL JNDI Properties for the Client Program

The following changes must be made to the file
%JBOSS_CLIENT%\jndi.properties that you modified in the previous section
for the client:

A |

1.

Modify the provider url property to specify the SSL port number, as follows:
java.naming.provider.url=tibjmsnaming://localhost:7243

Add the following lines:
com.tibco.tibjms.naming.security_protocol=ssl

com.tibco.tibjms.naming.ssl_enable_verify host=false

Be sure there are no trailing spaces on either line above (particularly after
security_protocol=ssl).

These properties specify that the "SSL" protocol should be used for JNDI
lookups, and that host verification is turned off (the client will trust any host).

TIBCO Enterprise Message Service Application Integration Guide

Modify the Example to use SSL Communications | 23

Modify and Rebuild the Client

Modify the client program (SendRecvClient) to look up
SSLXAQueueConnectionFactory instead of QueueConnectionFactory. Rebuild
the program.

Re-Run the Client Program

Run the client program as you did in the previous section. You should see the
same output.

To prove that SSL communications are occurring, stop the EMS server, then restart
it without SSL:
tibemsd -config tibemsd.conf

Then stop JBoss, then restart it. You should see the following exception in the
JBoss console:

javax.jms.JMSException: Failed to connect to the server at
ssl://localhost:7243

If you now run the test program again, you should see that it throws the same
exception. This shows that when the TIBCO Enterprise Message Service server
was set up to accept SSL connections, both clients successfully connected and
communicated using SSL.

Alternatively, you could start the TIBCO Enterprise Message Service server from
a command prompt window and turn SSL debug tracing on, as follows:

> tibemsd -ssl_debug_trace

Then when you restart JBoss and re-run the client program, you will see SSL
debugging output on the tibemsd console window.

TIBCO Enterprise Message Service Application Integration Guide

24 | Chapter 3 Integrating With JBoss 4.0.2

Container-Managed Transactions (XA)

The steps we have outlined in this chapter assume that the MDB uses
container-managed transactions. This section highlights configuration details
related to this feature.

Developer ~ The MDB developer did not code transaction logic into the MDB, and specified
this fact to application server in the file ejb-jar.xml. Namely, the
<transaction-type> attribute has the value Container (see ejb-jar.xml on
page 41). This fact has two consequences during deployment:

XA Connection ¢]JBoss 4.0.2 interprets this attribute value to indicate that the application
requires an XA connection.

— If your application indeed requires container-managed XA transactions,
then this interpretation is correct, and no changes are required.

— However, if your application does not use transactions at all, add this line
to the <message-driven> element (see jboss.xml on page 41):

<xa-connection> false </xa-connection>

XA Connection ¢ When we configured the connection factories in the EMS server, we created
Factory XA connection factories (see Queues and Connection Factories on page 45).

— If your application indeed requires container-managed XA transactions,
then this interpretation is correct, and no changes are required.

— However, if your application does not use transactions at all, you can
instead create connection factories that do not support XA:

> create factory QueueConnectionFactory queue
> create factory TopicConnectionFactory topic

TIBCO Enterprise Message Service Application Integration Guide

Chapter 4

Topics

25

Integrating With JBoss 3.2.3

This chapter describes integrating TIBCO Enterprise Message Service with the
JBoss J2EE application server, version 3.2.3. Specifically, you can use TIBCO
Enterprise Message Service to drive a Message Driven Bean (MDB) inside JBoss
from any EMS client.

* Qverview of Integrating With JBoss 3.2.3, page 26

* Get the Example MDB Working Using JBossMQ, page 27

® Get the Example MDB Working Using TIBCO Enterprise Message Service, page 30
* Modify the Example to use SSL Communications, page 34

* Container-Managed Transactions (XA), page 38

TIBCO Enterprise Message Service Application Integration Guide

26 | Chapter 4 Integrating With JBoss 3.2.3

Overview of Integrating With JBoss 3.2.3

This chapter describes integrating TIBCO Enterprise Message Service with the
JBoss J2EE application server, version 3.2.3. Specifically, you can use TIBCO
Enterprise Message Service to drive a Message Driven Bean (MDB) inside JBoss
from any EMS client.

The techniques described in this chapter assume you are using Windows 2000,
and that you have already downloaded and installed JBoss 3.2.3. It further
assumes that you are running JBoss, the TIBCO Enterprise Message Service
server, and the client program on the same machine.

Throughout the following procedures, environment variables are used to refer to
specific directories within the JBoss installation. They are not actually needed by
the JBoss server, but merely facilitate the reference to different directories in the
JBoss installation.

The following environment variables are used throughout the discussion below:

JBOSS_HOME = C:\JBoss-3.2.3

JBOSS_CLIENT = %JBOSS_HOME%\client

JBOSS_DEPLOY = %JBOSS_HOME%\server\default\deploy
JBOSS_CONF = %JBOSS_HOME%\server\default\conf

The example in this chapter configures an MDB that uses container-managed
% transactions. For more information, see Container-Managed Transactions (XA) on
page 53.

TIBCO Enterprise Message Service Application Integration Guide

Get the Example MDB Working Using JBossMQ

Get the Example MDB Working Using JBossMQ

1. To build the example MDB, add the following to your CLASSPATH:
%JBOSS_CLIENT%\jboss-j2ee.jar

2. Compile the example MDB, TextMDB. java. The source code for this example
is located in JBoss Administration and Development, Chapter 4, Example 2.

3. Create a directory named META-INF in the output directory that now contains
the org.jboss.chap4.ex2.TextMDB.class.

4. Copy the files ejb-jar.xml and jboss.xml from the source directory
associated with Example 2 of Chapter 4 of [Boss Administration and
Development, to the META-INF directory.

5. Create the EJB jar file by changing directories to the output directory and
issuing the following command:

jar cvf myejb.jar META-INF org\jboss\chap4\ex2\TextMDB.class
6. Map Connection Factory Names

In JBoss 3.2.3, the JNDI names QueueConnectionFactory and
TopicConnectionFactory do not come pre-mapped to the internal JBoss
connection factory called ConnectionFactory. Therefore you must add this
mapping in order to use the example MDB without modification. The
mapping must be configured by adding the following lines in the file
%JBOSS_DEPLOY%\jms\jbossmg-service.xml:

<!-- -—>
<!-- JBossMQ -——>
<!-- -—>

<mbean code="org.jboss.naming.NamingAlias"

name="DefaultDomain: service=NamingAlias, fromName=QueueConnectionFactory">
<attribute name="ToName">ConnectionFactory</attribute>
<attribute name="FromName'">QueueConnectionFactory</attribute>

</mbean>

<mbean code="org.jboss.naming.NamingAlias"

name="DefaultDomain: service=NamingAlias, fromName=TopicConnectionFactory">
<attribute name="ToName">ConnectionFactory</attribute>
<attribute name="FromName">TopicConnectionFactory</attribute>

</mbean>

7. Start the JBoss server by changing to the %7BOSS_HOME%\bin directory and
issuing the following command:

run
8. Copy myejb.jar to %TBOSS_DEPLOY%.

9. In the JBoss window, you should see output similar to the following;:

TIBCO Enterprise Message Service Application Integration Guide

27

28 | Chapter 4 Integrating With JBoss 3.2.3

19:35:33,343 INFO [org.jboss.deployment.MainDeployer] Starting deployment of
package: file:/C:/jboss-3.2.3/server/default/deploy/myejb.jar

19:35:34,296 INFO [org.jboss.ejb.EjbModule] Deploying TextMDB

19:35:34,875 INFO [org.jboss.ejb.plugins.jms.DLQHandler] Started null

19:35:34,875 INFO [org.jboss.ejb.plugins.jms.JMSContainerInvoker] Started
jboss.j2ee:binding=message-driven-bean, jndiName=local/TextMDB, plugin=invoker, serv
ice=EJB

19:35:34,875 INFO [org.jboss.ejb.plugins.MessageDrivenInstancePool] Started
jboss.j2ee:jndiName=1local/TextMDB, plugin=pool, service=EJB

19:35:34,875 INFO [org.jboss.ejb.MessageDrivenContainer] Started
jboss.j2ee:jndiName=1local/TextMDB, service=EJB

19:35:34,875 INFO [org.jboss.ejb.EjbModule] Started
jboss.j2ee:module=myejb.jar,service=EjbModule

19:35:34,875 INFO [org.jboss.ejb.EJBDeployer] Deployed:
file:/C:/jboss-3.2.3/server/default/deploy/myejb. jar

19:35:34,968 INFO [org.jboss.deployment.MainDeployer] Deployed package:
file:/C:/jboss-3.2.3/server/default/deploy/myejb. jar

10. To build the client program, make sure the following are in your CLASSPATH:

%JBOSS_CLIENT%\jboss-j2ee.jar
%JBOSS_CLIENT%\concurrent.jar

11. Compile the client program, org. jboss.chap4.ex2.SendRecvClient. java

The source to this program is listed in the book JBoss Administration and
Development.

12. To run the client program, add the following to your CLASSPATH:

%JBOSS_CLIENT%\jnp-client. jar
%JBOSS_CLIENT%\jbossmg-client.jar
%JBOSS_CLIENT%\jboss-common-client.jar
%JBOSS_CLIENT%\jnet.jar
%JBOSS_CLIENT%\1log4j.jar
%JBOSS_CLIENT%

The %JBOSS_CLIENT% directory is included so that the file jndi.properties
in that directory can be found (see the next step).

13. In JBoss 3.2.3, a jndi.properties file does not come pre-configured for the
client, therefore, you will have to create one. The easiest way is to first copy
jndi.properties from %JBOSS_CONF% to %TJBOSS_CLIENT%. Then add the
following line in the copied file:

java.naming.provider.url=localhost
14. Run the client program:
java org.jboss.chap4.ex2.SendRecvClient
You should see output like the following in the client program window:

Begin sendRecvAsync
sendRecvAsync, sent text=A text msg#0
sendRecvAsync, sent text=A text msg#l

sendRecvAsync, sent text=A text msg#8
sendRecvAsync, sent text=A text msg#9

TIBCO Enterprise Message Service Application Integration Guide

Get the Example MDB Working Using JBossMQ | 29

End sendRecvAsync

onMessage, recv text=A text msg#Oprocessed by: 3824284
onMessage, recv text=A text msg#3processed by: 32953059
onMessage, recv text=A text msg#6processed by: 32420722
onMessage, recv text=A text msg#8processed by: 23916456

You should also see output like the following in the JBoss server console:

TIBCO Enterprise Message Service Application Integration Guide

125,046 INFO [STDOUT] TextMDB.ctor, this=3824284

:25,078 INFO [STDOUT] TextMDB.setMessageDrivenContext, this=3824284

125,078 INFO [STDOUT] TextMDB.ejbCreate, this=3824284

:25,109 INFO [STDOUT] TextMDB.ctor, this=2003839

:25,109 INFO [STDOUT] TextMDB.setMessageDrivenContext, this=2003839

:25,109 INFO [STDOUT] TextMDB.ejbCreate, this=2003839

25,109 INFO [STDOUT] TextMDB.ctor, this=30170403

:25,125 INFO [STDOUT] TextMDB.setMessageDrivenContext, this=30170403
:25,125 INFO [STDOUT] TextMDB.ejbCreate, this=30170403

125,109 INFO [STDOUT] TextMDB.ctor, this=32953059

:25,140 INFO [STDOUT] TextMDB.setMessageDrivenContext, this=32953059
125,140 INFO [STDOUT] TextMDB.ejbCreate, this=32953059

125,125 INFO [STDOUT] TextMDB.ctor, this=31834937

:25,156 INFO [STDOUT] TextMDB.setMessageDrivenContext, this=31834937
125,156 INFO [STDOUT] TextMDB.ejbCreate, this=31834937

125,187 INFO [STDOUT] TextMDB.onMessage, this=3824284

125,187 INFO [STDOUT] TextMDB.sendReply, this=3824284, dest=QUEUE.A

:25,125 INFO [STDOUT] TextMDB.ctor, this=13863286

125,203 INFO [STDOUT] TextMDB.setMessageDrivenContext, this=13863286
125,203 INFO [STDOUT] TextMDB.ejbCreate, this=13863286

:25,203 INFO [STDOUT] TextMDB.onMessage, this=32953059

:25,218 INFO [STDOUT] TextMDB.sendReply, this=32953059, dest=QUEUE.A
125,234 INFO [STDOUT] TextMDB.onMessage, this=3824284

125,234 INFO [STDOUT] TextMDB.sendReply, this=3824284, dest=QUEUE.A

125,218 INFO [STDOUT] TextMDB.ctor, this=32420722

:25,250 INFO [STDOUT] TextMDB.setMessageDrivenContext, this=32420722
125,250 INFO [STDOUT] TextMDB.ejbCreate, this=32420722

125,296 INFO [STDOUT] TextMDB.ctor, this=23916456

125,296 INFO [STDOUT] TextMDB.setMessageDrivenContext, this=23916456
125,296 INFO [STDOUT] TextMDB.ejbCreate, this=23916456

:25,312 INFO [STDOUT] TextMDB.onMessage, this=31834937

:25,312 INFO [STDOUT] TextMDB.sendReply, this=31834937, dest=QUEUE.A
:25,328 INFO [STDOUT] TextMDB.onMessage, this=2003839

125,328 INFO [STDOUT] TextMDB.sendReply, this=2003839, dest=QUEUE.A

125,296 INFO [STDOUT] TextMDB.onMessage, this=32953059

125,343 INFO [STDOUT] TextMDB.sendReply, this=32953059, dest=QUEUE.A
125,343 INFO [STDOUT] TextMDB.onMessage, this=13863286

125,343 INFO [STDOUT] TextMDB.sendReply, this=13863286, dest=QUEUE.A
125,328 INFO [STDOUT] TextMDB.onMessage, this=30170403

125,343 INFO [STDOUT] TextMDB.sendReply, this=30170403, dest=QUEUE.A
125,375 INFO [STDOUT] TextMDB.onMessage, this=32420722

:25,375 INFO [STDOUT] TextMDB.sendReply, this=32420722, dest=QUEUE.A
125,421 INFO [STDOUT] TextMDB.onMessage, this=23916456

125,421 INFO [STDOUT] TextMDB.sendReply, this=23916456, dest=QUEUE.A

30 | Chapter 4 Integrating With JBoss 3.2.3

Get the Example MDB Working Using TIBCO Enterprise Message

Service

This example MDB uses container-managed transactions. For more information,
see Container-Managed Transactions (XA) on page 53.

&

1. Start the tibemsd server and the tibemsadmin console.

Queues and 2. Create three queues (queue/A, queue/B and queue/DLQ) and two XA

Connection connection factories (XAQueueConnectionFactory and
Factories XATopicConnectionFactory), by entering the following commands in
tibemsadmin:
connect

create queue queue/A

create queue queue/B

create queue queue/DLQ

create factory XAQueueConnectionFactory xaqueue url=tcp://7222
create factory XATopicConnectionFactory xatopic url=tcp://7222

VVVYVVYV

3. Make a backup copy (in a separate directory) of the configuration files that
will be changed:
%JBOSS_DEPLOY%\jms\jms-ds.xml
%JBOSS_CONF%\jboss-service.xml

%JBOSS_CONF%\jndi.properties
%JBOSS_CONF%\standardjboss.xml

You should copy the files in the %JB0SS_DEPLOY% directory to another
% directory, rather than rename the files in place. JBoss attempts to deploy all
files in that directory, regardless of name or file extension.

4. Add TIBCO EMS and the TIBCO EMS adapter class for JBoss to the
CLASSPATH of the JBoss server by modifying the file
%JBOSS_CONF%\ jboss-service.xml as described below. Substitute an
appropriate JAR file CLASSPATH for your installation.

Add the following lines under the <server> element in the file
%JBOSS_CONF%\ jboss-service.xml:

<!-- TIBCO Enterprise Message Service classpath -->
<classpath codebase="file:/C:\TIBCO\EMS\clients\java"
archives="tibjms.jar, tibjmsapps.jar" />

5. Reconfigure the JMSProviderLoader mbean to load TIBCO Enterprise
Message Service instead of JBoss MQ.

TIBCO Enterprise Message Service Application Integration Guide

Get the Example MDB Working Using TIBCO Enterprise Message Service

Remove the following lines from the file %7BOSS_DEPLOY%\ jms\jms-ds . xml:

<!-- The JMS provider loader -->
<mbean code="org.jboss.jms.jndi.JMSProviderLoader"
name="jboss.mq:service=JMSProviderLoader,name=JBossMQProvider">
<attribute name="ProviderName">DefaultJMSProvider</attribute>
<attribute name="ProviderAdapterClass">
org.jboss.jms.jndi.JBossMQProvider
</attribute>
<attribute name="QueueFactoryRef">java:/XAConnectionFactory</attribute>
<attribute name="TopicFactoryRef">java:/XAConnectionFactory</attribute>
</mbean>

Replace those removed lines with the following lines to cause
JMSProviderLoader mbean to load TIBCO Enterprise Message Service:

<!-- The JMS provider loader -->
<mbean code="org.jboss.jms.jndi.JMSProviderLoader"
name="jboss.mq:service=JMSProviderLoader,name=TibjmsProvider">
<attribute name="ProviderName">TIBCOJMSProvider</attribute>
<attribute name="ProviderAdapterClass">
com.tibco.tibjms.appserver.jboss.JBossAdapter
</attribute>
<attribute name="QueueFactoryRef">XAQueueConnectionFactory</attribute>
<attribute name="TopicFactoryRef">XATopicConnectionFactory</attribute>
</mbean>

6. When the sample MDB looks up the QueueConnectionFactory (in order to
create a QueueSender to send a message back to the initiator), it looks it up as
java:comp/env/jms/QCF. Because we want the QueueConnectionFactory
object that is returned from the lookup to be a TIBCO Enterprise Message
Service XAQueueConnectionFactory, we must store a JNDI LinkRef under
that name in the JBoss JNDI implementation that points to the
XAQueueConnectionFactory in the TIBCO Enterprise Message Service
implementation. Adding the following lines in
%JBOSS_DEPLOY%\ jms\ jms-ds.xml accomplishes this.

<!-- Redirect QueueConnectionFactory to TIBCO Enterprise Message Service -->
<mbean code="org.jboss.naming.NamingAlias"
name="DefaultDomain:service=NamingAlias, fromName=QueueConnectionFactory">
<attribute name="ToName">tibjmsnaming://localhost/XAQueueConnectionFactory
</attribute>
<attribute name="FromName'">QueueConnectionFactory</attribute>
</mbean>

7. When the sendRecvClient test program looks up the ConnectionFactory
referenced in the test program, it needs to be redirected to the appropriate
QueueConnectionFactory configured in EMS. Add the following lines in
%JBOSS_DEPLOY%\ jms\jms-ds.xml to accomplish this.

<mbean code="org.jboss.naming.NamingAlias"
name="DefaultDomain: service=NamingAlias, fromName=ConnectionFactory">

TIBCO Enterprise Message Service Application Integration Guide

31

32 | Chapter 4 Integrating With JBoss 3.2.3

<attribute name="ToName">tibjmsnaming://localhost/QueueConnectionFactory
</attribute>
<attribute name="FromName">ConnectionFactory</attribute>

</mbean>

8. When the JBoss server invokes JNDI and encounters the tibjmsnaming
scheme, the server must be able to find the TIBCO Enterprise Message Service
URLConnectionFactory. Therefore, modify the file
%JBOSS_CONF%\ jndi.properties as follows:

Change:

java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces

To

java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces:com.tibco.tibjms.n
aming

9. Inthe %JBOSS_CONF%\standardjboss.xml file, modify the following line.

Change:

<JMSProviderAdapterIJNDI>DefaultJMSProvider
</JMSProviderAdapterJNDI>

To:

<JMSProviderAdapterJNDI>TIBCOJMSProvider
</JMSProviderAdapterJNDI>

This change sets "TIBCOTMSProvider" as the JMS Provider Adapter JNDI name.

10. In the %¥TBOSS_CONF%\standardjboss.xml file, modify the following line.

Change:

<DestinationQueue>queue/DLQ</DestinationQueue>

To:

<DestinationQueue>
tibjmsnaming://localhost/queue/DLQ
</DestinationQueue>

This change specifies the TIBCO Enterprise Message Service JNDI name for the
MDB Dead Letter Queue (DLQ) queue/DLQ.

11. Move the following files out of the %J7B0SS_DEPLOY% directory. These files are
not needed when using TIBCO Enterprise Message Service and therefore
must not be deployed:

TIBCO Enterprise Message Service Application Integration Guide

Get the Example MDB Working Using TIBCO Enterprise Message Service | 33

%JBOSS_DEPLOY%\ jms\jbossmg-service.xml
%JBOSS_DEPLOY%\jms\jbossmg-destinations-service.xml

12. Stop the JBoss server, then it restart by entering;:
run

13. When the client program invokes JNDJ, it should use the TIBCO Enterprise
Message Service JNDI server. Modify %JBOSS_CLIENT%\jndi.properties to
use TIBCO Enterprise Message Service JNDI by setting the following
property:
java.naming.factory.initial=com.tibco.tibjms.naming.TibjmsInitialContextFactory
14. Add C:\TIBCO\EMS\clients\java\tibjms.jar to the CLASSPATH of the
client program.

15. Run the client program as you did in the previous section. You should see the
same output.

TIBCO Enterprise Message Service Application Integration Guide

34 | Chapter 4 Integrating With JBoss 3.2.3

Modify the Example to use SSL Communications

This section describes how to modify the above example to use SSL
communications between the TIBCO Enterprise Message Service server, JBoss,
and the client program. This section assumes you have already set up and run the
example detailed in the previous sections.

Adding the SSL JAR Files to the CLASSPATH for the JBoss Server

Add the TIBCO tibcrypt. jar file to the CLASSPATH of the JBoss server by
modifying the file ¥7BOSS_CONF%\jboss-service.xml as described below.
Substitute an appropriate JAR file CLASSPATH for your installation.

Add the following line under the <server> element in
%JBOSS_CONF%\ jboss-service.xml:

<classpath codebase="file:/C:\TIBCO\EMS\clients\java"
archives="tibcrypt.jar" />

Configuring the TIBCO Enterprise Message Service Server for SSL
1. Start tibemsd in the working directory C:\TIBCO\ems\bin as follows:
tibemsd -config tibemsdssl.conf

When tibemsd starts you should see messages like the following in the
console window, confirming SSL is enabled:

17:09:03 Secure Socket Layer is enabled, using OpenSSL 0.9.7c.
17:09:03 Accepting connections on tcp://localhost:7222.
17:09:03 Accepting connections on ssl://localhost:7243.
17:09:03 Server is active.

2. Start tibemsadmin (administration tool) and enter the following commands.

First, create a new XAQueueConnectionFactory that establishes SSL
connections:

create factory SSLXAQueueConnectionFactory xaqueue url=ssl://7243

Second, disable host verification for connections that this connection factory
creates:

setprop factory SSLXAQueueConnectionFactory ssl_verify host=disabled

This is the simplest SSL configuration.

TIBCO Enterprise Message Service Application Integration Guide

Modify the Example to use SSL Communications | 35

Configuring JBoss for SSL-based JMS Communications

There are two aspects to SSL communications between JBoss and the TIBCO EMS
server. The first is for messaging between the JBoss and TIBCO servers to occur
over SSL. The second is for JNDI lookups from JBoss to the TIBCO JNDI provider
to occur over SSL. The following two sections separately describe the required
steps for each.

JMS Messaging over SSL

1.

Modify the line you added to %JBOSS_DEPLOY%\ jms\jms-ds.xml in the
previous section (which specifies the QueueFactoryRef attribute of the J]MS
ProviderLoader) to be the be the new connection factory you just created
(which establishes SSL. connections):

<attribute name="QueueFactoryRef">
SSLXAQueueConnectionFactory
</attribute>

Modify the line you added to %JBOSS_DEPLOY%\ jms\jms-ds.xml in the
previous section so it creates the JNDI LinkRef ToName to the new SSL
connection factory—namely SSLXAQueueConnectionFactory (which you
created above):

<attribute name="ToName">

tibjmsnaming://localhost/SSLXAQueueConnectionFactory
</attribute>

JNDI Lookups over SSL

1.

In the file %$TBOSS_CONF%\jndi.properties, add the following lines:

com.tibco.tibjms.naming.security_protocol=ssl
com.tibco.tibjms.naming.ssl_enable_verify host=false

These properties specify the SSL protocol for JNDI lookups, and disable host
verification.

Add the following line in the JMSProviderLoader mbean in
%JBOSS_DEPLOY%\jms\jms-ds.xml:

<attribute name="ProviderUrl">
tibjmsnaming://localhost:7243</attribute>

The new line creates an additional attribute ProviderUrl, that explicitly
states the JNDI provider URL (rather than using the default built into the
TIBCO Enterprise Message Service JBoss adapter class) with a port number of
7243 for SSL. Note that attribute names are case sensitive and must be entered
exactly as shown above.

Modify the line you previously added to %¥7BOSS_DEPLOY%\ jms\jms-ds.xml
to explicitly specify the SSL port of 7243 in the JNDI LinkRef ToName:

TIBCO Enterprise Message Service Application Integration Guide

36 | Chapter 4 Integrating With JBoss 3.2.3

<attribute name="ToName">
tibjmsnaming://localhost:7243/SSLXAQueueConnectionFactory
</attribute>

Modify the line in file standardjboss.xml where you specified the TIBCO
Enterprise Message Service JNDI name of the DLQ to explicitly specify the
SSL port of 7243:

<DestinationQueue>tibjmsnaming://localhost:7243/queue/DLQ</DestinationQueue>

Stop and restart the JBoss server

You should see the same messages in the JBoss console during startup that you
saw in the previous section.

Adding the SSL JAR Files to the CLASSPATH for the Client Program

The following JAR files, distributed with TIBCO Enterprise Message Service,
must be added to the CLASSPATH of the client program, in the same manner that
you added the non-SSL jar files to the CLASSPATH in the previous example:

jcert.jar
jnet.jar
jsse.jar
tibcrypt. jar

Adding the SSL JNDI Properties for the Client Program

The following changes must be made to the file
%JBOSS_CLIENT%\jndi.properties that you modified in the previous section
for the client:

A |

1.

Modify the provider url property to specify the SSL port number, as follows:
java.naming.provider.url=tibjmsnaming://localhost:7243

Add the following lines:
com.tibco.tibjms.naming.security_protocol=ssl

com.tibco.tibjms.naming.ssl_enable_verify host=false

Be sure there are no trailing spaces on either line above (particularly after
security_protocol=ssl).

These properties specify that the "SSL" protocol should be used for JNDI
lookups, and that host verification is turned off (the client will trust any host).

TIBCO Enterprise Message Service Application Integration Guide

Modify the Example to use SSL Communications | 37

Modify and Rebuild the Client

Modify the client program (SendRecvClient) to look up
SSLXAQueueConnectionFactory instead of QueueConnectionFactory. Rebuild
the program.

Re-Run the Client Program

Run the client program as you did in the previous section. You should see the
same output.

To prove that SSL communications are occurring, stop the EMS server, then restart
it without SSL:
tibemsd -config tibemsd.conf

Then stop JBoss, then restart it. You should see the following exception in the
JBoss console:

javax.jms.JMSException: Failed to connect to the server at
ssl://localhost:7243

If you now run the test program again, you should see that it throws the same
exception. This shows that when the TIBCO Enterprise Message Service server
was set up to accept SSL connections, both clients successfully connected and
communicated using SSL.

Alternatively, you could start the TIBCO Enterprise Message Service server from
a command prompt window and turn SSL debug tracing on, as follows:

> tibemsd -ssl_debug_trace

Then when you restart JBoss and re-run the client program, you will see SSL
debugging output on the tibemsd console window.

TIBCO Enterprise Message Service Application Integration Guide

38 | Chapter 4 Integrating With JBoss 3.2.3

Container-Managed Transactions (XA)

The steps we have outlined in this chapter assume that the MDB uses
container-managed transactions. This section highlights configuration details
related to this feature.

Developer ~ The MDB developer did not code transaction logic into the MDB, and specified
this fact to application server in the file ejb-jar.xml. Namely, the
<transaction-type> attribute has the value Container (see ejb-jar.xml on
page 41). This fact has two consequences during deployment:

XA Connection ¢ JBoss 3.2.3 interprets this attribute value to indicate that the application
requires an XA connection.

— If your application indeed requires container-managed XA transactions,
then this interpretation is correct, and no changes are required.

— However, if your application does not use transactions at all, add this line
to the <message-driven> element (see jboss.xml on page 41):

<xa-connection> false </xa-connection>

XA Connection ¢ When we configured the connection factories in the EMS server, we created
Factory XA connection factories (see Queues and Connection Factories on page 45).

— If your application indeed requires container-managed XA transactions,
then this interpretation is correct, and no changes are required.

— However, if your application does not use transactions at all, you can
instead create connection factories that do not support XA:

> create factory QueueConnectionFactory queue
> create factory TopicConnectionFactory topic

TIBCO Enterprise Message Service Application Integration Guide

Chapter 5

Topics

39

Integrating With JBoss 3.0.4

This chapter describes integrating TIBCO Enterprise Message Service with the
JBoss J2EE application server, version 3.0.4. Specifically, you can use TIBCO
Enterprise Message Service to drive a Message Driven Bean (MDB) inside JBoss
from any EMS client.

* Qverview of Integrating With JBoss 3.0.4, page 40

* Get the Example MDB Working Using JBossMQ), page 41

® Get the Example MDB Working Using TIBCO Enterprise Message Service, page 45
* Modify the Example to use SSL Communications, page 49

* Container-Managed Transactions (XA), page 53

TIBCO Enterprise Message Service Application Integration Guide

40 | Chapter 5 Integrating With JBoss 3.0.4

Overview of Integrating With JBoss 3.0.4

This chapter describes integrating TIBCO Enterprise Message Service with the
JBoss J2EE application server, version 3.0.4. Specifically, you can use TIBCO
Enterprise Message Service to drive a Message Driven Bean (MDB) inside JBoss
from any EMS client.

The techniques described in this chapter assume you are using Windows 2000,
and that you have already downloaded and installed JBoss 3.0.4. It further
assumes that you are running JBoss, the TIBCO Enterprise Message Service
server, and the client program on the same machine.

Throughout the following procedures, environment variables are used to refer to
specific directories within the JBoss installation. They are not actually needed by
the JBoss server, but merely facilitate the reference to different directories in the
JBoss installation.

The following environment variables are used throughout the discussion below:

JBOSS_HOME = C:\JBoss-3.0.4

JBOSS_CLIENT = %JBOSS_HOME%\client

JBOSS_DEPLOY = %JBOSS_HOME%\server\default\deploy
JBOSS_CONF = %JBOSS_HOME%\server\default\conf

The example in this chapter configures an MDB that uses container-managed
% transactions. For more information, see Container-Managed Transactions (XA) on
page 53.

TIBCO Enterprise Message Service Application Integration Guide

Get the Example MDB Working Using JBossMQ | 41

Get the Example MDB Working Using JBossMQ

1. To build the example MDB, add the following to your CLASSPATH:
%JBOSS_CLIENT%\jboss-j2ee.jar

2. Compile the example MDB, TextMDB. java. The source code for this example
is located in JBoss Administration and Development, Chapter 4, Example 2.

3. Create a directory named META-INF in the output directory that now contains
the org.jboss.chap4.ex2.TextMDB.class.

4. Create the ejb-jar.xml and jboss.xml files in the META-INF directory. The
code for these files is listed in Jboss Administration and Development, but the
code below has slight modifications.

ejb-jar.xml
<?xml version="1.0"7?>
<!-- The ejb-jar.xml descriptor -->

<!DOCTYPE ejb-jar
PUBLIC "-//Sun Microsystems, Inc.//DID Enterprise
JavaBeans 2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd" >

<ejb-jar>
<enterprise-beans>
<message-driven>
<ejb-name>TextMDB</ejb-name>
<ejb-class>org.jboss.chap4.ex2.TextMDB</ejb-class>
<transaction-type>Container</transaction-type>
<acknowledge-mode>AUTO_ACKNOWLEDGE</acknowledge-mode>
<message-driven-destination>
<destination-type>javax.jms.Queue</destination-type>
</message-driven-destination>
<resource-ref>
<res-ref-name>jms/QCF</res-ref-name>
<res-type>javax.jms.QueueConnectionFactory</res-type>
<res-auth>Container</res-auth>
</resource-ref>
</message-driven>
</enterprise-beans>

</ejb-jar>

jboss.xml

<?xml version="1.0"7?>

<!-- The jboss.xml descriptor -->
<jboss>

<enterprise-beans>
<message-driven>
<ejb-name>TextMDB</ejb-name>
<destination-jndi-name>queue/B</destination-jndi-name>
<resource-ref>

TIBCO Enterprise Message Service Application Integration Guide

42 | Chapter 5 Integrating With JBoss 3.0.4

<res-ref-name>jms/QCF</res-ref-name>
<jndi-name>QueueConnectionFactory</jndi-name>
</resource-ref>
</message-driven>
</enterprise-beans>
</jboss>

5. Create the EJB jar file by changing directories to the output directory and
issuing the following command:

jar cvf myejb.jar META-INF org\jboss\chap4\ex2\TextMDB.class
6. Map Connection Factory Names

In JBoss 3.0.4, the JNDI names QueueConnectionFactory and
TopicConnectionFactory do not come pre-mapped to the internal JBoss
connection factory called ConnectionFactory. Therefore you must add this
mapping in order to use the example MDB without modification. The
mapping must be configured by adding the following lines in the file
%JBOSS_DEPLOY%\jbossmg-service.xml:

<!-- -—>
<!-- JBossMQ —-——>
<!-- -—>

<mbean code="org.jboss.naming.NamingAlias"

name="DefaultDomain: service=NamingAlias, fromName=QueueConnectionFactory">
<attribute name="ToName">ConnectionFactory</attribute>
<attribute name="FromName'">QueueConnectionFactory</attribute>

</mbean>

<mbean code="org.jboss.naming.NamingAlias"

name="DefaultDomain: service=NamingAlias, fromName=TopicConnectionFactory">
<attribute name="ToName">ConnectionFactory</attribute>
<attribute name="FromName">TopicConnectionFactory</attribute>

</mbean>

7. Start the JBoss server by changing to the ¥7B0SS_HOME%\bin directory and
issuing the following command:

run
8. Copy myejb.jar to %ITBOSS_DEPLOY%.

9. In the JBoss window, you should see output similar to the following;:

12:04:09,172 INFO [EjbModule] Creating

12:04:09,192 INFO [EjbModule] Deploying TextMDB

12:04:10,214 WARN [SecurityManager] No SecurityMetadadata was
available for B adding default security conf

12:04:10,284 INFO [EjbModule] Created

12:04:10,294 INFO [EjbModule] Starting

12:04:10,304 INFO [EjbModule] Started

12:04:10,304 INFO [MainDeployer]

deployment of package:
file:/C:/jboss-3.0.0/server/default/deploy/myejb.jar

10. To build the client program, make sure the following are in your CLASSPATH:

TIBCO Enterprise Message Service Application Integration Guide

11.

12.

13.

Get the Example MDB Working Using JBossMQ | 43

%JBOSS_CLIENT%\jboss-j2ee.jar
%JBOSS_CLIENT%\concurrent.jar

Compile the client program, org. jboss.chap4.ex2.SendRecvClient. java.
The source to this program is listed in Jboss Administration and Development.

To run the client program, add the following to your CLASSPATH:

%JBOSS_CLIENT%\jnp-client. jar
%JBOSS_CLIENT%\jbossmg-client.jar
%JBOSS_CLIENT%\jboss-common-client.jar
%JBOSS_CLIENT%\jnet.jar

%JBOSS_CLIENT%\1log4j.jar

%JBOSS_HOME%\client

The %IJBOSS_HOME%\client directory is included so that the file
jndi.properties in that directory can be found.

In JBoss 3.0.4, a jndi.properties does not come pre-configured for the
client, therefore, you will have to create one. The easiest way is to first copy
jndi.properties from %JBOSS_CONF% to %TJBOSS_CLIENT%. Then,
un-comment the following line in the copied file:

java.naming.provider.url=localhost

Run the client program:

java org.jboss.chap4.ex2.SendRecvClient

You should see output like the following in the client program window:

Begin sendRecvAsync

sendRecvAsync, sent text=A text msg#0

sendRecvAsync, sent text=A text msg#l

sendRecvAsync, sent text=A text msg#2

sendRecvAsync, sent text=A text msg#3

End sendRecvAsync

onMessage, recv text=A text msg#0Oprocessed by: 7438914
onMessage, recv text=A text msg#lprocessed by: 1639412
onMessage, recv text=A text msg#2processed by: 10668
onMessage, recv text=A text msg#3processed by: 1611150

You should also see output like the following in the JBoss server console:

[INFO,Default]
[INFO,Default]
[INFO,Default]
[INFO,Default]
[INFO,Default]
[INFO,Default]
[INFO,Default]

TextMDB.
TextMDB.
TextMDB.

ctor, this=7438914

setMessageDrivenContext,
ejbCreate, this=7438914
TextMDB.ctor, this=1639412

TextMDB.setMessageDrivenContext,
TextMDB.ejbCreate, this=1639412
TextMDB.onMessage, this=7438914

this=7438914

this=1639412

TextMDB.

[INFO,Default]
[INFO,Default]
[INFO,Default]
[INFO,Default]
[INFO,Default]

TextMDB
TextMDB

.ctor,
.setMessageDrivenContext,
TextMDB.
TextMDB.

sendReply, this=7438914,
this=10668

this=10668
this=1639412

ejbCreate,
onMessage,

dest=QUEUE.A

this=10668

TIBCO Enterprise Message Service Application Integration Guide

44 | Chapter 5 Integrating With JBoss 3.0.4

[INFO,Default]
[INFO,Default]
[INFO,Default]
[INFO,Default]
[INFO,Default]
[INFO,Default]
[INFO,Default]
[INFO,Default]
[INFO,Default]
[INFO,Default]
[INFO,Default]
[INFO,Default]
[INFO,Default]
[INFO,Default]
[INFO,Default]
[INFO,Default]
[INFO,Default]
[INFO,Default]
[INFO,Default]
[INFO,Default]
[INFO,Default]
[INFO,Default]
[INFO,Default]
[INFO,Default]
[INFO,Default]
[INFO,Default]
[INFO,Default]
[INFO,Default]
[INFO,Default]
[INFO,Default]
[INFO,Default]
[INFO,Default]
[INFO,Default]
[INFO,Default]
[INFO,Default]
[INFO,Default]
[INFO,Default]
[INFO,Default]

TextMDB

TextMDB

TextMDB
TextMDB

TextMDB.
TextMDB.
TextMDB.
.ejbCreate,
.ctor,
TextMDB.
TextMDB.
TextMDB.

TextMDB
TextMDB

TextMDB
TextMDB

TextMDB
TextMDB

TextMDB.
TextMDB.
TextMDB.

TextMDB
TextMDB

TextMDB

TextMDB.

.sendReply,
TextMDB.
TextMDB.
TextMDB.
TextMDB.
.sendReply,
TextMDB.
TextMDB.
TextMDB.
TextMDB.

.sendReply,
.ctor,
TextMDB.
TextMDB.
TextMDB.

.ejbCreate,
.ctor,
TextMDB.
TextMDB.
TextMDB.
TextMDB.

this=1639412,
ctor, this=1611150
setMessageDrivenContext,
ejbCreate, this=1611150
onMessage, this=10668
this=10668,
ctor, this=6808485
setMessageDrivenContext,

ejbCreate, this=6808485
onMessage, this=1611150
.sendReply, this=1611150,
.onMessage, this=6808485
sendReply, this=6808485,
ctor, this=3277650

setMessageDrivenContext,

this=3277650
this=5224450

setMessageDrivenContext,
ejbCreate, this=5224450
onMessage, this=3277650
this=3277650,
this=4280406

setMessageDrivenContext,

ejbCreate, this=4280406
onMessage, this=5224450
.sendReply, this=5224450,
.ctor, this=4977982

onMessage, this=4280406
sendReply, this=4280406,
setMessageDrivenContext,

this=4977982
this=6805499
setMessageDrivenContext,

ejbCreate, this=6805499
onMessage, this=4977982
sendReply, this=4977982,
.onMessage, this=6805499
sendReply, this=6805499,

TIBCO Enterprise Message Service Application Integration Guide

dest=QUEUE. A

this=1611150

dest=QUEUE.A

this=6808485

dest=QUEUE.A
dest=QUEUE.A

this=3277650

this=5224450

dest=QUEUE.A

this=4280406

dest=QUEUE.A

dest=QUEUE.A
this=4977982

this=6805499

dest=QUEUE.A

dest=QUEUE.A

Get the Example MDB Working Using TIBCO Enterprise Message Service | 45

Get the Example MDB Working Using TIBCO Enterprise Message

Service

This example MDB uses container-managed transactions. For more information,
see Container-Managed Transactions (XA) on page 53.

&

1. Start the tibemsd server and the tibemsadmin console.

Queues and 2. Create three queues (queue/A, queue/B and queue/DLQ) and two XA
Connection connection factories (XAQueueConnectionFactory and
Factories XATopicConnectionFactory), by entering the following commands in
tibemsadmin:

connect

create queue queue/A

create queue queue/B

create queue queue/DLQ

create factory XAQueueConnectionFactory xaqueue
create factory XATopicConnectionFactory xatopic

VVVYVVYV

3. Make a backup copy of the configuration files that will be changed:

%JBOSS_DEPLOY%\ jms-service.xml
%JBOSS_CONF%\jboss-service.xml
%JBOSS_CONF%\jndi.properties

%JBOSS_CONF%\standardjboss.xml

You should copy the files in the %JB0SS_DEPLOY% directory to another
% directory, rather than rename the files in place. JBoss attempts to deploy all
files in that directory, regardless of name or file extension.

4. Add TIBCO Enterprise Message Service and the TIBCO Enterprise Message
Service adapter class for JBoss to the CLASSPATH of the JBoss server by
modifying the file described below. The value of the jar file paths should be
modified for your installation.

Add the following line under the <server> element in jms-service.xml:

<!-- TIBCO Enterprise Message Service classpath -->
<classpath codebase="file://C:\TIBCO\EMS\clients\java"
archives="tibjms.jar, tibjmsapps.jar" />

5. Remove the configuration that causes the JMSProviderLoader mbean to load
JBoss MQ.

TIBCO Enterprise Message Service Application Integration Guide

46 | Chapter 5 Integrating With JBoss 3.0.4

In the file jms-service.xml, remove the following lines:
<!-- The JMS provider loader -->
<mbean code="org.jboss.jms.jndi.JMSProviderLoader"
name="jboss.mq:service=JMSProviderLoader,name=JBossMQProvider">
<attribute name="ProviderName">DefaultJMSProvider</attribute>
<attribute name="ProviderAdapterClass">
org.jboss.jms.jndi.JBossMQProvider
</attribute>
<attribute name="QueueFactoryRef">java:/XAConnectionFactory</attribute>
<attribute name="TopicFactoryRef">java:/XAConnectionFactory</attribute>
</mbean>

Replace the removed lines with the following lines to cause
JMSProviderLoader mbean to load TIBCO Enterprise Message Service:

In the file jms-service.xml add the following lines:
<!-- The JMS provider loader -->
<mbean code="org.jboss.jms.jndi.JMSProviderLoader"
name="jboss.mq:service=JMSProviderLoader,name=TibjmsProvider">
<attribute name="ProviderName">TIBCOJMSProvider</attribute>
<attribute name="ProviderAdapterClass">
com.tibco.tibjms.appserver.jboss.JBossAdapter
</attribute>
<attribute name="QueueFactoryRef">XAQueueConnectionFactory</attribute>
<attribute name="TopicFactoryRef">XATopicConnectionFactory</attribute>
</mbean>

6. When the sample MDB looks up the QueueConnectionFactory (in order to
create a QueueSender to send a message back to the initiator), it looks it up as
java:comp/env/jms/QCF.BecausevvevvanttheQueueConnectionFactory
object that is returned from the lookup to be a TIBCO Enterprise Message
Service XAQueueConnectionFactory, we must store a JNDI LinkRef under
that name in the JBoss JNDI implementation that points to the
XAQueueConnectionFactory in the TIBCO Enterprise Message Service
implementation. Adding the following lines in jms-service.xml

accomplishes this.

<!-- Redirect QueueConnectionFactory to TIBCO Enterprise Message Service -->
<mbean code="org.jboss.naming.NamingAlias"

name="DefaultDomain: service=NamingAlias, fromName=QueueConnectionFactory">

<attribute name="ToName">tibjmsnaming://localhost/XAQueueConnectionFactory

</attribute>

<attribute name="FromName'">QueueConnectionFactory</attribute>

</mbean>

7. In jboss-service.xml, change the dependency of the EJB Deployer from
JBossMQProvider to TibjmsProvider

Change:

<depends>jboss.mq: service=JMSProviderLoader,name=JBossMQProvider</depends>

TIBCO Enterprise Message Service Application Integration Guide

Get the Example MDB Working Using TIBCO Enterprise Message Service | 47

To:

<depends>jboss.mq:service=JMSProviderlLoader,name=TibjmsProvider</depends>

8. When the JBoss server invokes JNDI and encounters the tibjmsnaming
scheme, the server must be able to find the TIBCO Enterprise Message Service
URLConnectionFactory. Therefore, modify the file
%JBOSS_CONF%\ jndi.properties as follows:

Change:

java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces

To

java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces:com.tibco.tibjms.n
aming

9. Inthe %JBOSS_CONF%\standardjboss.xml file, modify the following line.
This sets "TIBCOJMSProvider" as the JMS Provider Adapter JNDI name:

Change:

<JMSProviderAdapterJNDI>DefaultJMSProvider
</JMSProviderAdapterJNDI>

To:

<JMSProviderAdapterJNDI>TIBCOJMSProvider
</JMSProviderAdapterJNDI>

10. In the %¥TBOSS_CONF%\standardjboss.xml file, modify the following line.
This specifies the TIBCO Enterprise Message Service JNDI name for the MDB
Dead Letter Queue (DLQ) queue/DLQ:

Change:

<DestinationQueue>queue/DLQ</DestinationQueue>

To:

<DestinationQueue>
tibjmsnaming://localhost/queue/DLQ
</DestinationQueue>

11. Move the following files out of the %¥TBOSS_DEPLOY% directory. These files are
not needed when using TIBCO Enterprise Message Service and therefore
must not be deployed:

%JBOSS_DEPLOY%\jbossmg-service.xml
%JBOSS_DEPLOY%\jbossmg-destinations-service.xml

12. Stop and restart the JBoss server by entering:

TIBCO Enterprise Message Service Application Integration Guide

48 | Chapter 5 Integrating With JBoss 3.0.4

run

13. When the client program invokes JNDJ, it should use the TIBCO Enterprise
Message Service JNDI server. Modify %JBOSS_CLIENT%\jndi.properties to
use TIBCO Enterprise Message Service JNDI by setting the following

property:

java.naming.factory.initial=com.tibco.tibjms.naming.TibjmsInitialContextFactory

14. Add C:\TIBCO\EMS\clients\java\tibjms.jar to the CLASSPATH of the
client program.

15. Run the client program as you did in the previous section. You should see the
same output.

TIBCO Enterprise Message Service Application Integration Guide

Modify the Example to use SSL Communications | 49

Modify the Example to use SSL Communications

This section describes how to modify the above example to use SSL
communications between the TIBCO Enterprise Message Service server, JBoss,
and the client program. This section assumes you have already set up and run the
example detailed in the previous sections.

Adding the SSL JAR Files to the CLASSPATH for the JBoss Server

The following JAR files, distributed with TIBCO Enterprise Message Service,
must be added to the CLASSPATH of the JBoss server, in the same manner that you
added the non-SSL jar files to the JBoss CLASSPATH in the previous example:
jcert.jar

jnet.jar

jsse.jar

tibcrypt. jar

Add the following line under the <server> element in jms-service.xml:

<classpath codebase="file://C:\TIBCO\EMS\clients\java"
archives="jcert.jar, Jjnet.jar, jsse.jar, tibcrypt.jar" />

Configuring the TIBCO Enterprise Message Service Server for SSL
1. Enter the following commands in tibemsadmin:
>create factory SSLXAQueueConnectionFactory xaqueue url=ssl://7243

This creates a new XAQueueConnectionFactory that establishes SSL
connections.

>setprop factory SSLXAQueueConnectionFactory
ssl_verify_host=disabled

This turns off host verification for connections created by this connection
factory. This is the simplest SSL configuration.

2. IncC:\Tibco\EMS\bin\tibemsd.conf, add the following lines:

listen = ssl://localhost:7243

ssl_server_identity = certs/server.cert.pem
ssl_server_key = certs/server.key.pem
ssl_password = password

listen = tcp://localhost:7222

These lines explicitly set the tcp and ssl listen ports and specify the three
required server-side SSL parameters: identity, private key, and password.

TIBCO Enterprise Message Service Application Integration Guide

50 | Chapter 5 Integrating With JBoss 3.0.4

Save the file, stop and restart the TIBCO Enterprise Message Service server.
When it restarts you should see messages like the following in the console
window confirming SSL is enabled:

2002-03-19 13:48:34 Secure Socket Layer is enabled.
2002-03-19 13:48:34 Accepting connections on
ssl://localhost:7243.

2002-03-19 13:48:34 Accepting connections on
tcp://localhost:7222.

Configuring JBoss for SSL-based JMS Communications

There are two aspects to SSL communications between JBoss and the TIBCO EMS
server. The first is for messaging between the JBoss and TIBCO servers to occur
over SSL. The second is for JNDI lookups from JBoss to the TIBCO JNDI provider
to occur over SSL. The following two sections separately describe the required
steps for each.

JMS Messaging over SSL

1.

Modify the line you added to jms-service.xml in the previous section which
specifies the QueueFactoryRef attribute of the JMS Provider Loader to be the
be the new connection factory you just created that establishes SSL
connections:

<attribute name="QueueFactoryRef">
SSLXAQueueConnectionFactory</attribute>

Modify the line you added to jms-service.xml in the previous section to
create the JNDI LinkRef ToName to the new connection factory:

<attribute name="ToName">
tibjmsnaming://localhost/SSLXAQueueConnectionFactory
</attribute>

and the name is changed to SSLXAQueueConnectionFactory, the SSL-based
XAQueueConnectionFactory that you just created.

JNDI Lookups over SSL

&

1.

The following steps arrange for the JBoss server to do JNDI lookup using SSL.
However, a defect in JBoss 3.0.0 (and later releases) requires TCP for JNDI
lookup—SSL is not currently available. In the meantime, we retain these
instructions, as we expect a future JBoss release to correct this defect.

In the file ¥7BOSS_CONF%\jndi.properties, add the following line:

com.tibco.tibjms.naming.security_protocol=ssl

TIBCO Enterprise Message Service Application Integration Guide

Modify the Example to use SSL Communications

This property specifies that the "SSL" protocol should be used for JNDI
lookups.

2. Add the following line in the JMSProviderLoader mbean in
jms-service.xml:

<attribute name="ProviderUrl">
tibjmsnaming://localhost:7243</attribute>

The new line creates an additional attribute ProviderUrl, that explicitly
states the JNDI provider URL (rather than using the default built into the
TIBCO Enterprise Message Service JBoss adapter class) with a port number of
7243 for SSL. Note that attribute names are case sensitive and must be entered
exactly as shown above.

3. Modify the line you previously added to jms-service.xml to explicitly
specify the SSL port of 7243 in the JNDI LinkRef ToName:

<attribute name="ToName">
tibjmsnaming://localhost:7243/SSLXAQueueConnectionFactory
</attribute>

4. Modify the line in file standardjboss.xml where you specified the TIBCO

Enterprise Message Service JNDI name of the DLQ to explicitly specify the
SSL port of 7243:

<DestinationQueue>tibjmsnaming://localhost:7243/queue/DLQ</DestinationQueue>

Stop and restart the JBoss server

You should see the same messages in the JBoss console during startup that you
saw in the previous section.

Adding the SSL JAR Files to the CLASSPATH for the Client Program

The following JAR files, distributed with TIBCO Enterprise Message Service,
must be added to the CLASSPATH of the client program, in the same manner that
you added the non-SSL jar files to the CLASSPATH in the previous example:
jcert.jar

jnet.jar

jsse.jar

tibcrypt.jar

Adding the SSL JNDI Properties for the Client Program

The following changes must be made to the file
%JBOSS_CLIENT%\jndi.properties that you modified in the previous section
for the client:

TIBCO Enterprise Message Service Application Integration Guide

51

52 | Chapter 5 Integrating With JBoss 3.0.4

A |

1. Modify the provider url property to specify the SSL port number, as follows:
java.naming.provider.url=tibjmsnaming://localhost:7243

2. Add the following lines:
com.tibco.tibjms.naming.security_protocol=ssl

com.tibco.tibjms.naming.ssl_enable_verify_ host=false

Be sure there are no trailing spaces on either line above (particularly after
securityfprotocol=ssl).

These properties specify that the "SSL" protocol should be used for JNDI
lookups, and that host verification is turned off (the client will trust any host).

Modify and Rebuild the Client

Modify the client program (SendRecvClient) to look up
SSLXAQueueConnectionFactory instead of QueueConnectionFactory. Rebuild
the program.

Re-Run the Client Program

Run the client program as you did in the previous section. You should see the
same output.

To prove that SSL communications are occurring, you could remove the SSL
settings you added to tibemsd. conf in Configuring the TIBCO Enterprise
Message Service Server for SSL on page 49, and restart the TIBCO Enterprise
Message Service server. Then stop and restart JBoss. You should see the following
exception in the JBoss console:

javax.jms.JMSException: Failed to connect to the server at
ssl://localhost:7243

If you now run the test program again, you should see that it throws the same
exception. This shows that when the TIBCO Enterprise Message Service server
was set up to accept SSL connections, both clients successfully connected and
communicated using SSL.

Alternatively, you could start the TIBCO Enterprise Message Service server from
a command prompt window and turn SSL debug tracing on, as follows:

> tibemsd -ssl_debug_trace

Then when you restart JBoss and re-run the client program, you will see SSL
debugging output on the tibemsd console window.

TIBCO Enterprise Message Service Application Integration Guide

Container-Managed Transactions (XA) | 53

Container-Managed Transactions (XA)

Developer

XA Connection

XA Connection
Factory

The steps we have outlined in this chapter assume that the MDB uses
container-managed transactions. This section highlights configuration details
related to this feature.

The MDB developer did not code transaction logic into the MDB, and specified
this fact to application server in the file ejb-jar.xml. Namely, the
<transaction-type> attribute has the value Container (see ejb-jar.xml on
page 41). This fact has two consequences during deployment:

*]JBoss 3.0.4 interprets this attribute value to indicate that the application
requires an XA connection.

— If your application indeed requires container-managed XA transactions,
then this interpretation is correct, and no changes are required.

— However, if your application does not use transactions at all, add this line
to the <message-driven> element (see jboss.xml on page 41):

<xa-connection> false </xa-connection>

¢ When we configured the connection factories in the EMS server, we created
XA connection factories (see Queues and Connection Factories on page 45).

— If your application indeed requires container-managed XA transactions,
then this interpretation is correct, and no changes are required.

— However, if your application does not use transactions at all, you can
instead create connection factories that do not support XA:

> create factory QueueConnectionFactory queue
> create factory TopicConnectionFactory topic

TIBCO Enterprise Message Service Application Integration Guide

54 | Chapter 5 Integrating With JBoss 3.0.4

TIBCO Enterprise Message Service Application Integration Guide

Chapter 6

Topics

|55

Integrating With Borland Enterprise Server
5.1

This chapter describes integrating TIBCO Enterprise Message Service with
Borland Enterprise Server (BES) 5.1. Specifically, you can use TIBCO Enterprise
Message Service to drive a Message Driven Bean (MDB) inside Borland
Enterprise Server with a J2EE application client.

Borland Enterprise Server has an example MDB named “Hello Message-Driven
Beans Example”. The example includes a simple MDB and J2EE application client
program. The example illustrates how to trigger the MDB within Borland
Enterprise Server using the external client program (using SonicMQ as the JMS
provider).

This chapter demonstrates using that same example with TIBCO Enterprise
Message Service as the JMS provider. Also, instructions are given on how to
convert the example to support container-managed XA transactions in which
TIBCO Enterprise Message Service can participate as an XA resource. Also, this
section details how the example can be modified to use the SSL communication
protocol between the TIBCO Enterprise Message Service server and both Borland
Enterprise Server and the J2EE application client.

* Configure Borland Enterprise Server to use TIBCO Enterprise Message Service,
page 56

* Configure TIBCO Enterprise Message Service for the Example Program, page 59
* Building and Deploying the Example MDB and the Example Client, page 64

e Running This Example, page 65

* Modifying This Example to use SSL Communications, page 66

TIBCO Enterprise Message Service Application Integration Guide

56 | Chapter 6 Integrating With Borland Enterprise Server 5.1

Configure Borland Enterprise Server to use TIBCO Enterprise

Message Service

Borland Enterprise Server (BES) 5.1 uses a definitions archive (DAR) module for
deployment of administered objects. Administered JMS objects such as queues,
topics, and their respective connection factories are defined in the
jndi-definitions.xml file. This file is used to build the DAR module that
defines objects to be loaded into the Borland Partition’s Naming Service. You
must build a DAR module that specifies TIBCO Enterprise Message Service
objects.

The Borland Enterprise Server installation contains several copies of the
jndi-definitions.xml file. Modify the file located in
C:\<BES-install-dir>\examples\ejb\mdb and use the modified file to build the
DAR module.

In this file, there are several XML elements named <jndi-object> that define the
SonicMQ JMS classes. These classes must be replaced with TIBCO Enterprise
Message Service classes.

The following illustrates the replacements to make in bold:

<jndi-definitions>
<jndi-object>
<jndi-name>serial://jms/tibgcf</jndi-name>
<class-name>
com.tibco.tibjms.appserver.borland.TibjmsBorlandQueueConnectionFactory
</class-name>
<property>
<prop-name>serverUrl</prop-name>
<prop-type>String</prop-type>
<prop-value>localhost:7222</prop-value>
</property>
</jndi-object>
<jndi-object>
<jndi-name>serial://jms/tibtcf</jndi-name>
<class-name>
com.tibco.tibjms.appserver.borland.TibjmsBorlandTopicConnectionFactory
</class-name>
<property>
<prop-name>serverUrl</prop-name>
<prop-type>String</prop-type>
<prop-value>localhost:7222</prop-value>
</property>
</jndi-object>
<jndi-object>
<jndi-name>serial://jms/tibxaqcf</jndi-name>
<class-name>
com.tibco.tibjms.appserver.borland.TibjmsBorlandXAQueueConnectionFactory
</class-name>

TIBCO Enterprise Message Service Application Integration Guide

com

com

com.

Configure Borland Enterprise Server to use TIBCO Enterprise Message Service

<property>
<prop-name>serverUrl</prop-name>
<prop-type>String</prop-type>
<prop-value>localhost:7222</prop-value>
</property>
</jndi-object>
<jndi-object>
<jndi-name>serial://jms/tibxatcf</jndi-name>
<class-name>

.tibco.tibjms.appserver.borland.TibjmsBorlandXATopicConnectionFactory

</class-name>
<property>
<prop-name>serverUrl</prop-name>
<prop-type>String</prop-type>
<prop-value>localhost:7222</prop-value>
</property>
</jndi-object>
<jndi-object>
<jndi-name>serial://jms/tibg</jndi-name>
<class-name>

.tibco.tibjms.appserver.borland.TibjmsBorlandQueue</class-name>

<property>
<prop-name>address</prop-name>
<prop-type>String</prop-type>
<prop-value>TibQl</prop-value>
</property>
</jndi-object>
<jndi-object>
<jndi-name>serial://jms/tibt</jndi-name>
<class-name>
tibco.tibjms.appserver.borland.TibjmsBorlandTopic</class-name>
<property>
<prop-name>address</prop-name>
<prop-type>String</prop-type>
<prop-value>TibTl</prop-value>
</property>
</jndi-object>

</jndi-definitions>

Save the changes to the jndi-definitions.xml file and build a new DAR
module using the following command:

> jar cvMf ems-resources.dar META-INF/jndi-definitions.xml

TIBCO Enterprise Message Service Application Integration Guide

57

58 | Chapter 6 Integrating With Borland Enterprise Server 5.1

&

If you are running the TIBCO Enterprise Message Service server in secure mode,
you can specify default username and password attributes in the connection
factories.

The default username and password are used by the connection factories for
every connection created where a username and password is not explicitly
provided by the application server. An example definition of these connection
factory properties is shown below:

<property>
<prop-name>userName</prop-name>
<prop-type>String</prop-type>
<prop-value>userl</prop-value>

</property>

<property>
<prop-name>userPassword</prop-name>
<prop-type>String</prop-type>
<prop-value>secret</prop-value>

</property>

Deploy the TIBCO Enterprise Message Service JAR files, tibjms. jar and
tibjmsapps. jar, then deploy the ems-resources.dar file in the target partition
using the Borland Enterprise Server Console. The deployment steps are similar to
an EJB JAR file. Refer to the Borland Enterprise Server 5.1 User’s Guide for details.

TIBCO Enterprise Message Service Application Integration Guide

Configure TIBCO Enterprise Message Service for the Example Program | 59

Configure TIBCO Enterprise Message Service for the Example

Program

You must create the topics and queues for the example program using the TIBCO
Enterprise Message Service administration tool. To accomplish this, perform the
following procedure:

1. Start the TIBCO Enterprise Message Service server (tibemsd).

2. Start the administration tool (tibemsadmin).

3. Enter the following commands at the administration tool prompt:
connect

create queue TibQl

create topic TibT1l
commit

VVVYV

TIBCO Enterprise Message Service Application Integration Guide

60 | Chapter 6 Integrating With Borland Enterprise Server 5.1

Configure Borland Enterprise Server for the Example Message

Driven Bean

Borland Enterprise Server contains an example MDB in the
C:\<BES-install-dir>\ examples\ejb\mdb directory. The example consists of the
MDB HelloBean. java and the client MdbClient . java. The same bean can be
used to consume messages from both queues and topics.

The MDB is defined in the standard ejb-jar.xml deployment descriptor file.
This file defines two E]JBs, one named HelloEJBQueue and another named
HelloEJBTopic. Both beans are implemented as the same class,
com.borland.examples.ejb.mdb.HelloBean. This class can be used for this
example without modification.

Using Container-Managed XA Transactions

If you want to use container managed XA transactions with the He110EJBQueue
MDB, make the following changes to the deployment descriptors, ejb-jar.xml
and ejb-borland.xml.

In ejb-jar.xml, make the changes in bold:

<ejb-jar>
<enterprise-beans>
<message-driven>
<ejb-name>HelloEJBQueue</ejb-name>
<ejb-class>
com.borland.examples.ejb.mdb.HelloBean</ejb-class>
<transaction-type>Container</transaction-type>
<message-driven-destination>
<destination-type>javax.jms.Queue</destination-type>
</message-driven-destination>
<env-entry>
<env-entry-name>
messageAcknowledgement</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value><HelloEJBQueue> Got a message
from queue TibQl:</env-entry-value>
</env-entry>
</message-driven>
<message-driven>
<ejb-name>HelloEJBTopic</ejb-name>
<ejb-class>
com.borland.examples.ejb.mdb.HelloBean</ejb-class>
<transaction-type>Bean</transaction-type>
<acknowledge-mode>Auto-acknowledge</acknowledge-mode>
<message-driven-destination>
<destination-type>javax.jms.Topic</destination-type>

TIBCO Enterprise Message Service Application Integration Guide

Configure Borland Enterprise Server for the Example Message Driven Bean | 61

<subscription-durability>
Durable</subscription-durability>
</message-driven-destination>
<env-entry>
<env-entry-name>
messageAcknowledgement</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value><HelloEJBTopic> Got a message
from topic TibTl:</env-entry-value>
</env-entry>
</message-driven>
</enterprise-beans>
<assembly-descriptor>
<container-transaction>
<method>
<ejb-name>HelloEJBQueue</ejb-name>
<method-name>*</method-name>
</method>
<trans-attribute>Required</trans-attribute>
</container-transaction>
</assembly-descriptor>
</ejb-jar>

In ejb-borland.xml, make the changes in bold:

<ejb-jar>
<enterprise-beans>
<message-driven>
<ejb-name>HelloEJBQueue</ejb-name>
<message-driven-destination-name>
serial://jms/tibg</message-driven-destination-name>
<connection-factory-name>
serial://jms/tibxaqcf</connection-factory-name>
<pool>
<max-size>20</max-size>
<init-size>2</init-size>
</pool>
</message-driven>
<message-driven>
<ejb-name>HelloEJBTopic</ejb-name>
<message-driven-destination-name>
serial://jms/tibt</message-driven-destination-name>
<connection-factory-name>
serial://jms/tibtcf</connection-factory-name>
<pool>
<max-size>20</max-size>
<init-size>2</init-size>
</pool>
</message-driven>
</enterprise-beans>
</ejb-jar>

TIBCO Enterprise Message Service Application Integration Guide

62 | Chapter 6 Integrating With Borland Enterprise Server 5.1

Using XA Transactions That Are Not Container-Managed

If you do not want to use container managed XA transactions with the
HelloEJBQueue MDB, make the following changes to the deployment
descriptors, ejb-jar.xml and ejb-borland.xml.

In ejb-jar.xml, make the changes in bold:

<ejb-jar>
<enterprise-beans>
<message-driven>
<ejb-name>HelloEJBQueue</ejb-name>
<ejb-class>
com.borland.examples.ejb.mdb.HelloBean</ejb-class>
<transaction-type>Container</transaction-type>
<message-driven-destination>
<destination-type>javax.jms.Queue</destination-type>
</message-driven-destination>
<env-entry>
<env-entry-name>
messageAcknowledgement</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value><HelloEJBQueue> Got a message
from queue TibQl:</env-entry-value>
</env-entry>
</message-driven>
<message-driven>
<ejb-name>HelloEJBTopic</ejb-name>
<ejb-class>
com.borland.examples.ejb.mdb.HelloBean</ejb-class>
<transaction-type>Bean</transaction-type>
<acknowledge-mode>Auto-acknowledge</acknowledge-mode>
<message-driven-destination>
<destination-type>javax.jms.Topic</destination-type>
<subscription-durability>
Durable</subscription-durability>
</message-driven-destination>
<env-entry>
<env-entry-name>
messageAcknowledgement</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value><HelloEJBTopic> Got a message
from topic TibTl:</env-entry-value>
</env-entry>
</message-driven>
</enterprise-beans>
<assembly-descriptor>
<container-transaction>
<method>
<ejb-name>HelloEJBQueue</ejb-name>
<method-name>*</method-name>
</method>
<trans-attribute>NotSupported</trans-attribute>
</container-transaction>
</assembly-descriptor>

TIBCO Enterprise Message Service Application Integration Guide

Configure Borland Enterprise Server for the Example Message Driven Bean

</ejb-jar>

In ejb-borland.xml, make the changes in bold:

<ejb-jar>
<enterprise-beans>
<message-driven>
<ejb-name>HelloEJBQueue</ejb-name>
<message-driven-destination-name>
serial://jms/tibg</message-driven-destination-name>
<connection-factory-name>
serial://jms/tibqcf</connection-factory-name>
<pool>
<max-size>20</max-size>
<init-size>2</init-size>
</pool>
</message-driven>
<message-driven>
<ejb-name>HelloEJBTopic</ejb-name>
<message-driven-destination-name>
serial://jms/tibt</message-driven-destination-name>
<connection-factory-name>
serial://jms/tibtcf</connection-factory-name>
<pool>
<max-size>20</max-size>
<init-size>2</init-size>
</pool>
</message-driven>
</enterprise-beans>
</ejb-jar>

TIBCO Enterprise Message Service Application Integration Guide

63

64 | Chapter 6 Integrating With Borland Enterprise Server 5.1

Building and Deploying the Example MDB and the Example Client

The application-client.xml file does not need to be changed for this example.
However, the application client deployment descriptor
application-client-borland.xml file must be changed. The following
highlights the changes to make in bold:

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE application-client PUBLIC "-//Borland Software
Corporation//DTD J2EE Application Client //EN"
"http://www.borland.com/devsupport/appserver/dtds/application-clie
nt_1_3-borland.dtd">
<application-client>
<resource-ref>
<res-ref-name>jms/qcf</res-ref-name>
<jndi-name>serial://jms/tibgcf</jndi-name>
</resource-ref>
<resource-ref>
<res-ref-name>jms/tcf</res-ref-name>
<jndi-name>serial://jms/tibtcf</jndi-name>
</resource-ref>
<resource-env-ref>
<resource-env-ref-name>jms/g</resource-env-ref-name>
<jndi-name>serial://jms/tibqg</jndi-name>
</resource-env-ref>
<resource-env-ref>
<resource-env-ref-name>jms/t</resource-env-ref-name>
<jndi-name>serial://jms/tibt</jndi-name>
</resource-env-ref>
</application-client>

After changing application-client-borland.xml, build the example MDB and
example, by changing to the directory C:\<BES-install-dir>\examples\ejb\mdb
and issuing the make_all command. This results in two files in that directory:
message_beans.jar and message_beans_client. jar.

Deploy the message_beans.jar module to the target partition using the Borland
Enterprise Server Console. See the Borland Enterprise Server 5.1 User’s Guide for
more information about deploying modules.

TIBCO Enterprise Message Service Application Integration Guide

Running This Example | 65

Running This Example

Before running the example, ensure that the CLASSPATH includes the following
JAR files:

message_beans_client.jar

tibjms. jar

tibjmsapps.jar

tibcrypt. jar

To run the example client, navigate to the directory
C:\<BES-install-dir>\examples\ejb\mdb and enter the following command:

>appclient message_beans_client.jar

The client prints the following messages in the window:
Sending a message to queue TibQl.

Publishing a message to topic TibTl.

Done.

The output of the MDB appears in the event log for the partition where you
deployed the MDB. You can view the event log output from the Borland
Enterprise Console.

The following messages are displayed in the event log:

<HelloEJBQueue> Got a message from queue TibQl:
Hello MDB, this is a message from the client...
<HelloEJBTopic> Got a message from topic TibT1l:
Hello MDB, this is another message from the client...

TIBCO Enterprise Message Service Application Integration Guide

66 | Chapter 6 Integrating With Borland Enterprise Server 5.1

Modifying This Example to use SSL Communications

This section describes how to modify the above example to use SSL
communications between the TIBCO Enterprise Message Service server, Borland
Enterprise Server, and the client program. This section assumes you have already
set up and run the example detailed in the previous sections.

Configuring the TIBCO Enterprise Message Service Server for SSL

In C:\Tibco\EMS\bin\tibemsd. conf, add the following lines:
listen = ssl://localhost:7223

ssl_server_identity = certs/server.cert.pem
ssl_server_key = certs/server.key.pem
ssl_password = password

listen = tcp://localhost:7222

These lines explicitly set the tcp and ssl listen ports, and specify the three required
server-side SSL parameters: identity, private key, and password.

Save the file, then stop and restart the TIBCO Enterprise Message Service server.

Configuring Borland Enterprise Server and the Application Client for
SSL-Based Communication

You must configure the JMS ConnectionFactories that Borland Enterprise Server
and the application client retrieve from JNDI to use SSL-based communication.
Borland Enterprise Server reads definitions for JMS administered objects from the
jndi-definitions.xml file, deployed as part of a DAR module. Borland
Enterprise Server instantiates and stores the objects into its own JNDI provider for
subsequent lookup by all J2EE clients. Therefore, modify the definitions of the
ConnectionFactories in the jndi-definitions.xml as described in the following
paragraphs. After the modifications are complete, build and deploy a new DAR
module using the updated jndi-definitions.xml file.

Change the value of the serverUrl property for both the
QueueConnectionFactory and the TopicConnectionFactory to specify "ssl" as
the protocol and "7223" as the port. The following section of code illustrates this
change.

<property>
<prop-name>serverUrl</prop-name>
<prop-type>String</prop-type>
<prop-value>ssl://localhost:7223</prop-value>
</property>

TIBCO Enterprise Message Service Application Integration Guide

[Mon Oct 18 18
[Mon Oct 18 18
disabled, will
[Mon Oct 18 18

empty identity.

[Mon Oct 18 18

Modifying This Example to use SSL Communications

Add definitions for two additional properties to both the
QueueConnectionFactoryandthepricConnectionFactory:Theseproperﬁes
turn on SSL tracing so that output is generated indicating that SSL is being used.
The properties also turn off host verification so that specifying a trusted certificate
is not required for this example (refer to the Borland Enterprise Server
documentation for a complete list of all the parameters that can be set for the
Connection Factories). The following section of code illustrates this change:

<property>
<prop-name>SSLTrace</prop-name>
<prop-type>Boolean</prop-type>
<prop-value>true</prop-value>

</property>

<property>
<prop-name>SSLEnableVerifyHost</prop-name>
<prop-type>Boolean</prop-type>
<prop-value>false</prop-value>

</property>

Save the changes to the jndi-definitions.xml file and build a new DAR
module using the following command:

> jar cvMf ems-resources.dar META-INF/jndi-definitions.xml

Deploy the JAR file jcert. jar, jnet. jar, jsse.jar, and tibcrypt. jar from the
TIBCO Enterprise Message Service installation to the target partition using the
Borland Enterprise Server Console. Redeploy the ems-resources.dar file to the
target partition (refer to the Borland Enterprise Server 5.1 User’s Guide for details).

Stop and restart Borland Enterprise Server to make these changes take effect.

When Borland Enterprise Server starts, it uses the new SSL-based
ConnectionFactories to establish SSL-based topic and queue connections to
invoke the example MDB. This can be verified by examining the SSL tracing
output in the error log of the target partition. The error log can be viewed using
the Borland Enterprise Server Console.

When Borland Enterprise Server completes its startup sequence, you should see
output similar to the following:

SSL_RSA_WITH RC4_128_SHA

[Mon Feb 18 18
disabled, will
[Mon Oct 18 18

empty identity.

[Mon Oct 18 18

:32:03 PST 2002] stderr: [TibjmsSSL]: using security vendor 'j2se'
:32:03 PST 2002] stderr: [TibjmsSSL]: WARNING: server verification is
trust any server.

:32:03 PST 2002] stderr: [TibjmsSSL]: client identity not set, using
:32:07 PST 2002] stderr: [TibjmsSSL]: selected cipher:

:32:08 PST 2002] stderr: [TibjmsSSL]: WARNING: server verification is
trust any server.

:32:08 PST 2002] stderr: [TibjmsSSL]: client identity not set, using
:32:08 PST 2002] stderr: [TibjmsSSL]: selected cipher:

SSL_RSA_WITH_RC4_128_SHA

TIBCO Enterprise Message Service Application Integration Guide

67

68 | Chapter 6 Integrating With Borland Enterprise Server 5.1

[TibjmsSSL]:
[TibjmsSSL]:
[TibjmsSSL]:
[TibjmsSSL]:

Running This Example

To run the example client, navigate to the directory
C:\<BES-install-dir>\examples\ejb\mdb and enter the following command:

> appclient message_beans_client.jar

The client prints the same messages in the window as before, but the SSL trace
messages described in the previous section are also output. For example:

using security vendor 'j2se'

WARNING: server verification is disabled, will trust any server.
client identity not set, using empty identity.

selected cipher: SSL_RSA_WITH_RC4_128_ SHA

Sending a message to queue TibQl.

[TibjmsSSL]:
[TibjmsSSL]:
[TibjmsSSL]:

WARNING: server verification is disabled, will trust any server.
client identity not set, using empty identity.
selected cipher: SSL_RSA_WITH_RC4_128_ SHA

Publishing a message to topic TibTl.

Done.

TIBCO Enterprise Message Service Application Integration Guide

Chapter 7

Topics

|69

Integrating With Borland Enterprise Server
5.0

This chapter describes integrating TIBCO Enterprise Message Service with
Borland Enterprise Server (BES) 5.0. Specifically, you can use TIBCO Enterprise
Message Service to drive a Message Driven Bean (MDB) inside Borland
Enterprise Server with a J2EE application client.

Borland Enterprise Server has an example MDB named "Hello Message-Driven
Beans Example". The example includes a simple MDB and J2EE application client
program. The example illustrates how to trigger the MDB within Borland
Enterprise Server using the external client program (using SonicMQ as the JMS
provider).

This chapter demonstrates using that same example with TIBCO Enterprise
Message Service as the JMS provider. Also, instructions are given on how to
convert the example to use SSL as the communication protocol between the
TIBCO Enterprise Message Service server and both Borland Enterprise Server and
the J2EE application client.

* Configure Borland Enterprise Server to use TIBCO Enterprise Message Service,
page 70

o Configure TIBCO Enterprise Message Service for the Example Program, page 73

* Configure Borland Enterprise Server for the Example Message Driven Bean, page 74
* Building and Deploying the Example MDB and the Example Client, page 75

e Running This Example, page 76

* Modifying This Example to use SSL Communications, page 77

TIBCO Enterprise Message Service Application Integration Guide

70 | Chapter 7 Integrating With Borland Enterprise Server 5.0

Configure Borland Enterprise Server to use TIBCO Enterprise

Message Service

Administered JMS objects such as queues, topics, and their respective connection
factories are defined in the jndi-definitions.xml file. This file defines objects
that are loaded into the Borland file-based naming service. This file is
pre-configured to load the SonicMQ objects. You must modify this file to specify
TIBCO Enterprise Message Service objects instead.

The Borland Enterprise Server installation contains several copies of the
jndi-definitions.xml file, and you should modify the file in the correct
location. If Borland Enterprise Server was installed in the default location
(C:\BorlandEnterpriseServer), then there is a subdirectory within the
C:\BorlandEnterpriseServer\var\servers directory named for the server
you have installed. The default name of the subdirectory is the name of the
machine, but you can specify a different server name. The
jndi-definitions.xml file you wish to edit should be located in the following
directory:

C:\BorlandEnterpriseServer\var\servers\<server-name>\partitions\stand
ard

Near the end of this file are several XML elements named <jndi-object> that
define the SonicMQ JMS classes. These must be replaced with TIBCO Enterprise
Message Service classes. The following illustrates the replacements to make in
bold:

<jndi-object>
<jndi-name>serial://jms/qcf</jndi-name>
<class-name>
com.tibco.tibjms.appserver.borland.TibjmsBorlandQueueConnectionFactory
</class-name>
<property>
<prop-name>serverUrl</prop-name>
<prop-type>String</prop-type>
<prop-value>tcp://localhost:7222</prop-value>
</property>
</jndi-object>

<jndi-object>
<jndi-name>serial://jms/tcf</jndi-name>
<class-name>
com.tibco.tibjms.appserver.borland.TibjmsBorlandTopicConnectionFactory
</class-name>
<property>
<prop-name>serverUrl</prop-name>
<prop-type>String</prop-type>
<prop-value>tcp://localhost:7222</prop-value>
</property>

TIBCO Enterprise Message Service Application Integration Guide

Configure Borland Enterprise Server to use TIBCO Enterprise Message Service

</jndi-object>

<jndi-object>
<jndi-name>serial://jms/qg</jndi-name>
<class-name>
com.tibco.tibjms.appserver.borland.TibjmsBorlandQueue
</class-name>
<property>
<prop-name>address</prop-name>
<prop-type>String</prop-type>
<prop-value>SampleQl</prop-value>
</property>
</jndi-object>

<jndi-object>
<jndi-name>serial://jms/t</jndi-name>
<class-name>
com.tibco.tibjms.appserver.borland.TibjmsBorlandTopic
</class-name>
<property>
<prop-name>address</prop-name>
<prop-type>String</prop-type>
<prop-value>SampleTl</prop-value>
</property>
</jndi-object>

If you are running the TIBCO Enterprise Message Service server in secure mode,
% you can specify default username and password attributes in the connection
factories.

The default username and password are used by the connection factories for
every connection created where a username and password is not explicitly
provided by the application server. An example definition of these connection
factory properties is shown below:

<property>
<prop-name>userName</prop-name>
<prop-type>String</prop-type>
<prop-value>userl</prop-value>

</property>

<property>
<prop-name>userPassword</prop-name>
<prop-type>String</prop-type>
<prop-value>secret</prop-value>

</property>

You must also place the TIBCO Enterprise Message Service JAR files where
Borland Enterprise Server can locate them. There are various ways to accomplish
this, but the simplest method is to create a directory named patches under
C:\BorlandEnterpriseServer\1lib and place the JAR files there. Borland

TIBCO Enterprise Message Service Application Integration Guide

71

72 | Chapter 7 Integrating With Borland Enterprise Server 5.0

Enterprise Server prepends any jar files in that location to its CLASSPATH
automatically. The following jar files from the TIBCO Enterprise Message Service
installation should be placed under
C:\BorlandEnterpriseServer\lib\patches:

jms.jar

jndi.jar

tibjms. jar

tibjmsapps.jar

TIBCO Enterprise Message Service Application Integration Guide

Configure TIBCO Enterprise Message Service for the Example Program | 73

Configure TIBCO Enterprise Message Service for the Example

Program

You must create the topics and queues for the example program using the TIBCO
Enterprise Message Service administration tool. To accomplish this, perform the
following procedure:

1. Start the TIBCO Enterprise Message Service server (tibemsd).

2. Start the administration tool (tibemsadmin).

3. Enter the following commands at the administration tool prompt:
connect

create queue SampleQl

create topic SampleTl
commit

VVVYV

TIBCO Enterprise Message Service Application Integration Guide

74 | Chapter 7 Integrating With Borland Enterprise Server 5.0

Configure Borland Enterprise Server for the Example Message

Driven Bean

Borland Enterprise Server contains an example MDB in the
C:\BorlandEnterpriseServer\examples\ejb\mdb directory. The example
consists of the MDB HelloBean. java and the client MdbClient . java. The same
bean can be used to consume messages from both queues and topics.

The MDB is defined in the standard ejb-jar.xml deployment descriptor file.
This file defines two E]JBs, one named HelloEJBQueue and another named
HelloEJBTopic. Both beans are implemented as the same class,
com.borland.examples.ejb.mdb.HelloBean. This class can be used for this
example without modification.

This example will not use XA transactions, therefore the deployment descriptor
for the example MDB must be modified. The following two files must be modified
to remove XA from the example:

C:\BorlandEnterpriseServer\examples\ejb\mdb\META-INF\ejb-jar.xml
C:\BorlandEnterpriseServer\examples\ejb\mdb\META-INF\ejb-borland.xml

In ejb-jar.xml, change the <trans-attribute> element of the deployment
descriptor for the He110EJBQueue bean. The attribute should be changed from
"Required" to "NotSupported".

In ejb-borland.xml, the JMS Destination and Connection Factory JNDI names
are pre-configured to use the XA Queue Connection Factory. Change the
<connection-factory-name> element from serial://jms/xaqcf to
serial://jms/qcf.

TIBCO Enterprise Message Service Application Integration Guide

Building and Deploying the Example MDB and the Example Client | 75

Building and Deploying the Example MDB and the Example Client

The application client deployment descriptors (application-client.xml and
application-client-borland.xml) do not need modification for this example.
To build the example MDB and example, change to the directory
C:\BorlandEnterpriseServer\examples\ejb\mdb and issue the make_all
command. This results in two files in that directory: message_beans. jar and
message_beans_client.jar.

To deploy the example MDB, use the Borland Enterprise Server console. Use the
following procedure:

1.

Start Borland Enterprise Server by selecting Start > Programs > Borland
Enterprise Server > Server from the Windows Start menu.

Start the console by selecting Start > Programs > Borland Enterprise Server >
Console from the Windows Start menu.

Enter the administrator password when the login box appears.

When the console window appears, highlight the server name of the server
you just installed. You can find the server under Management Domain
>Enterprise Servers.

On the main menu, select Tasks > Deployment > Deploy J2EE modules to a
partition.

When the J2EE Deployment Wizard appears, click "Add...".

Navigate to
C:\BorlandEnterpriseServer\examples\ejb\mdb\message_beans.jar

and click "OK".

Ensure that the target partition is bes: //<server name>/standard, then click
"OK". There should be no errors displayed in the dialog box.

To verify the MDB deployed successfully, navigate to Management Domain >
Enterprise Servers > <server-name> >Partition > standard > Deployed
Modules in the left hand pane of the console. You should see
message_beans. jar in the list with a green check box next to it.

TIBCO Enterprise Message Service Application Integration Guide

76 | Chapter 7 Integrating With Borland Enterprise Server 5.0

Running This Example

To run the example client, navigate to the directory
C:\BorlandEnterpriseServer\examples\ejb\mdb and enter the following
command:

>appclient message_beans_client.jar

The client prints the following messages in the window:
Sending a message to queue SampleQl.
Publishing a message to topic SampleTl.

Done.

The output of the MDB appears in the event log in the following location:
C:\BorlandEnterpriseServer\var\servers\<server-name>\adm\logs\
partitions\standard\event.log

The following messages are contained in that file:

<HelloEJBQueue> Got a message from queue SampleQl:
Hello MDB, this is a message from the client...
<HelloEJBTopic> Got a message from topic SampleTl:
Hello MDB, this is another message from the client...

You can also view the event log output from the Borland Console, by clicking on
"standard" in the left pane, clicking on the "Logs" tab in the lower right pane, and
choosing "event" in the drop down menu in the upper left corner of the right
pane.

TIBCO Enterprise Message Service Application Integration Guide

Modifying This Example to use SSL Communications | 77

Modifying This Example to use SSL Communications

This section describes how to modify the above example to use SSL
communications between the TIBCO Enterprise Message Service server, Borland
Enterprise Server, and the client program. This section assumes you have already
set up and run the example detailed in the previous sections.

Configuring the TIBCO Enterprise Message Service Server for SSL

In C:\Tibco\EMS\bin\tibemsd. conf, add the following lines:
listen = ssl://localhost:7223

ssl_server_identity = certs/server.cert.pem
ssl_server_key = certs/server.key.pem
ssl_password = password

listen = tcp://localhost:7222

These lines explicitly set the tcp and ssl listen ports, and specify the three required
server-side SSL parameters: identity, private key, and password.

Save the file, then stop and restart the TIBCO Enterprise Message Service server.

Configuring Borland Enterprise Server and the Application Client for
SSL-Based Communication

You must configure the JMS ConnectionFactories that Borland Enterprise Server
and the application client retrieve from JNDI to use SSL-based communication.
Borland Enterprise Server reads definitions for JMS administered objects from the
jndi-definitions.xml file then instantiates and stores the objects into its own
JNDI provider for subsequent lookup by all J2EE clients. Therefore, modify the
definitions of the ConnectionFactories in the jndi-definitions.xml as
described in the following paragraphs.

Change the value of the serverUrl property for both the
QueueConnectionFactory and the TopicConnectionFactory to specify "ssl" as
the protocol and "7223" as the port. The following section of code illustrates this
change.

<property>
<prop-name>serverUrl</prop-name>
<prop-type>String</prop-type>
<prop-value>ssl://localhost:7223</prop-value>
</property>

TIBCO Enterprise Message Service Application Integration Guide

78 | Chapter 7 Integrating With Borland Enterprise Server 5.0

Add definitions for two additional properties to both the
QueueConnectionFactoryandthepricConnectionFactory:Theseproperﬁes
turn on SSL tracing so that output is generated indicating that SSL is being used.
The properties also turn off host verification so that specifying a trusted certificate
is not required for this example (refer to the Borland Enterprise Server
documentation for a complete list of all the parameters that can be set for the
Connection Factories). The following section of code illustrates this change:

<property>
<prop-name>SSLTrace</prop-name>
<prop-type>Boolean</prop-type>
<prop-value>true</prop-value>

</property>

<property>
<prop-name>SSLEnableVerifyHost</prop-name>
<prop-type>Boolean</prop-type>
<prop-value>false</prop-value>

</property>

Save the changes to the jndi-definitions.xml file.

You must also add the required SSL JAR files to the Borland Enterprise Server
patches directory. The following additional JAR files from the TIBCO Enterprise
Message Service installation must be placed in the same patches directory
described in the section Configure Borland Enterprise Server to use TIBCO
Enterprise Message Service on page 70:

jcert.jar

jnet.jar

jsse.jar

tibcrypt. jar

Stop and restart Borland Enterprise Server to make these changes take effect.

When Borland Enterprise Server starts, it uses the new SSL-based
ConnectionFactories to establish SSL-based topic and queue connections to
invoke the example MDB. This can be verified by examining the SSL tracing
output. This output is written to Standard Error, and can be found in the file:

C:\BorlandEnterpriseServer\var\servers\<server-name>\adm\logs\
partitions\standard\error.log

When Borland Enterprise Server completes its startup sequence, you should see
output similar to the following:

[Mon Feb 18 18:32:03 PST 2002] stderr: [TibjmsSSL]: using security vendor 'j2se'
[Mon Feb 18 18:32:03 PST 2002] stderr: [TibjmsSSL]: WARNING: server verification is
disabled, will trust any server.

[Mon Feb 18 18:32:03 PST 2002] stderr: [TibjmsSSL]: client identity not set, using
empty identity.

[Mon Feb 18 18:32:07 PST 2002] stderr: [TibjmsSSL]: selected cipher:
SSL_RSA_WITH_RC4_128_SHA

TIBCO Enterprise Message Service Application Integration Guide

Modifying This Example to use SSL Communications

[Mon Feb 18 18:32:08 PST 2002] stderr: [TibjmsSSL]: WARNING: server verification is
disabled, will trust any server.

[Mon Feb 18 18:32:08 PST 2002] stderr: [TibjmsSSL]: client identity not set, using
empty identity.

[Mon Feb 18 18:32:08 PST 2002] stderr: [TibjmsSSL]: selected cipher:
SSL_RSA_WITH_RC4_128_SHA

[TibjmsSSL]:
[TibjmsSSL]:
[TibjmsSSL]:
[TibjmsSSL]:

Running This Example

To run the example client, navigate to the directory
C:\BorlandEnterpriseServer\examples\ejb\mdband(ﬂﬁerthefoﬂowdng
command:

> appclient message_beans_client.jar

The client prints the same messages in the window as before, but the SSL trace
messages described in the previous section are also output. For example:

using security vendor 'Jj2se'
WARNING: server verification is disabled, will trust any server.
client identity not set, using empty identity.

selected cipher: SSL_RSA WITH _RC4_128_SHA

Sending a message to queue SampleQl.

[TibjmsSSL]:
[TibjmsSSL]:
[TibjmsSSL]:

WARNING: server verification is disabled, will trust any server.
client identity not set, using empty identity.

selected cipher: SSL_RSA WITH_RC4_128_SHA

Publishing a message to topic SampleT1l.

Done.

TIBCO Enterprise Message Service Application Integration Guide

79

80 | Chapter 7 Integrating With Borland Enterprise Server 5.0

TIBCO Enterprise Message Service Application Integration Guide

Chapter 8

Topics

81

Integrating With WebLogic Server 8.1

This chapter describes how to use TIBCO Enterprise Message Service to drive a
Message Driven Bean (MDB) inside WebLogic Server 8.1. The examples in this
chapter use the preconfigured Examples server and the example MDB that comes
bundled as a sample with WebLogic Server 8.1.

The examples in this chapter assume you have installed WebLogic Server 8.1 on a
Windows platform in the directory C:\bea.

* Running the Example MDB with WebLogic Server, page 82

* Configuring the Example MDB, page 83

* Rebuilding and Redeploying the Example MDB, page 87

* Running the Example MDB Client, page 88

* Modifying this Example to Use SSL Communication, page 89

* Modifying this Example to use Container Managed Transactions and XA, page 92

TIBCO Enterprise Message Service Application Integration Guide

82 | Chapter 8 Integrating With WebLogic Server 8.1

Running the Example MDB with WebLogic Server

You should run the example MDB using WebLogic Server to ensure the MDB is
configured and deployed properly. The source code for the example MDB is in:

C:\bea\WebLogic8l\samples\server\examples\src\examples\ejb20\
message

The file package-summary.html in the directory above contains instructions for
building and running the example MDB inside the Examples server. Follow the
instructions detailed in that file for running the example MDB. One thing the
instructions fail to explicitly state is that you must navigate to the MDB source
code directory, given above, when you execute the command to run the MDB
client (that is, the command ant run).

TIBCO Enterprise Message Service Application Integration Guide

Configuring the Example MDB | 83

Configuring the Example MDB

You must make the following configuration changes to the WebLogic Server 8.1 to
drive the example MDB using TIBCO Enterprise Message Service instead of
WebLogic Server.

Add the TIBCO Enterprise Message Service JAR file to the CLASSPATH of
WebLogic Server.

Create the appropriate foreign JMSConnectionFactory and foreign
JMSDestination for the foreign JMS Server, TIBCO Enterprise Message
Service, in WebLogic. This is necessary to allow the WebLogic server to
redirect lookups of ConnectionFactory and Destinations in its JNDI to TIBCO
Enterprise Message Service's JNDI.

Create the appropriate JMS Destination object inside the TIBCO Enterprise
Message Service server using its administration tool.

Modify the weblogic-ejb-jar.xml file for the MDB to use appropriate
JMSConnectionFactory and JMSDestination.

Modify the client program to look up its administered objects from the built-in
JNDI provider in TIBCO Enterprise Message Service.

These steps are described in the following sections.

Adding TIBCO Enterprise Message Service to the WebLogic CLASSPATH

In the directory C:\bea\weblogic8l\samples\domains\examples, modify the
CLASSPATH environment variable in setExamplesEnv. cmd (the examples setup
script.) and startExamplesServer.cmd (the start script).

On Windows platforms the extension for both of these files is . cmd; on UNIX
% platforms the extension is . sh.

Modify the CLASSPATH by adding this path to the end of its value list:

C:\Tibco\ems\clients\java\tibjms. jar

Creating Foreign JMSServer, JMSConnectionFactory, and JMSDestination in

WebLogic

To create a foreign JMSServer, JMSConnectionFactory, and JMSDestination:

1.

Open a new command prompt window and change directory to:
C:\bea\weblogic8l\samples\domains\examples.

TIBCO Enterprise Message Service Application Integration Guide

84 | Chapter 8 Integrating With WebLogic Server 8.1

10.

11.
12.

Run the script startExamplesServer. cmd.

When the WebLogic server completes startup, it will automatically point your
default browser to the examples page. If it does not, start a web browser and
load the page, http://<machineName>:7001/examplesWebApp/index. jsp.

Click on the Administration Console link. Enter weblogic as the Username
and Password and click Sign In.

In the left pane, select examples->services->JMS->Foreign JMS Servers.
In the right pane click the "Configure a new Foreign JMSServer..." link.

Enter TIBCO JMSServer in the Name box,
com.tibco.tibjms.naming.TibjmsInitialContextFactory in the JNDI
Initial Context Factory box, and tibjmsnaming://localhost: 7222 in the
JNDI Connection URL box.

Click Create and then click Apply.

In the left pane, select examples->services->JMS->Foreign JMS
Servers->TIBCO JMSServer->Foreign JMSConnectionFactories.

In the right pane, click the "Configure a new Foreign JMSConnectionFactory..."
link.

Enter TIBCO JMSTopicConnectionFactory in the Name box, TIBCO.tcf in
the Local JNDI Name box, and TopicConnectionFactory in the Remote JNDI
Name box.

Click Create and then click Apply.

In the left pane, select examples->services->JMS->Foreign JMS
Servers->TIBCO JMSServer->Foreign JMSDestinations.

In the right pane, click the "Configure a new Foreign J]MSDestination..." link.

Enter TIBCO JMSTopic quotes in the Name box, TIBCO. quotes in the Local
JNDI Name box, and quotes in the Remote JNDI Name box.

Click Create and then click Apply.

Creating the Example MDB Destination Object Inside TIBCO EMS

To create the example MDB destination objects, perform the following:

1.

Start the TIBCO Enterprise Message Service server by selecting
Start->Programs->TIBCO Enterprise Message Service 4.3->Start JMS Server
from the Windows Start menu.

TIBCO Enterprise Message Service Application Integration Guide

Configuring the Example MDB | 85

2. Start the TIBCO Enterprise Message Service administration tool by selecting
Start->Programs->TIBCO Enterprise Message Service 4.3->Start EMS
Administration Tool from the Windows Start menu.

3. Enter the following commands:

> connect
> create topic quotes

Modifying the weblogic-ejb-jar.xml file for MDB

To use the appropriate JMSConnectionFactory and JMSDestination modify the
file C:\bea\weblogic81l\samples\server\examples\src\examples\ejb20\
message\weblogic-ejb-jar.xml as follows:

1. Replace the two instances of quotes in the <destination-jndi-name>
element with TIBCO. quotes.

2. Within the <message-driven-descriptor> element and immediately after
both instances of the <destination-jndi-name> element, add the following
element:

<connection-factory-jndi-name>

TIBCO.tcf
</connection-factory-jndi-name>

Modifying the Client Program to Use TIBCO Enterprise Message Service JNDI

To use the JNDI provided by TIBCO Enterprise Message Service, the example
MBDB client program must be modified in three areas:

e the source code
* the build script

e the runtime environment i.e. the CLASSPATH

To modify the client source code:

The source file for the MDB client program is Client . java in the directory:
C:\bea\weblogic8l\samples\server\examples\src\examples\ejb20\message

Find and replace the following strings in the source file:

Find Replace With...

weblogic.jms.ConnectionFactory TopicConnectionFactory

weblogic.jndi.WLInitialContext com.tibco.tibjms.naming.Tibjms
Factory InitialContextFactory

TIBCO Enterprise Message Service Application Integration Guide

86 | Chapter 8 Integrating With WebLogic Server 8.1

There should be one occurrence of each of the above strings. When you are
finished, save your changes.

To modify the build script to run the client:

The client program is run by executing the ant build script with a target of run.
The build script passes the JNDI provider URL to the client program, and
therefore it must be modified to pass the URL of TIBCO Enterprise Message
Service JNDI. The file build.xml in the example MDB source directory contains
the build script. Near the bottom of that file is the following line:

<arg value="t3://localhost:${PORT}"/>
Modify that line as follows:

<arg value="tibjmsnaming://localhost:7222" />

To set the environment:

You have already added the tibjms. jar file to the CLASSPATH in a previous
section. To set the environment, perform the following:

1. Open a new command prompt window.
2. Change directory to:
C:\bea\weblogic8l\samples\domains\examples>
3. Enter the following command:
> setExamplesEnv

Verify that tibjms. jar is present when the script echoes the CLASSPATH.

TIBCO Enterprise Message Service Application Integration Guide

Rebuilding and Redeploying the Example MDB | 87

Rebuilding and Redeploying the Example MDB

If WebLogic Server 8.1 server is still running, restart it. This causes TIBCO
Enterprise Message Service to be added to its environment. Using the window
created in the section To set the environment: on page 86, change directory to the

example MDB source directory:
C:\bea\weblogic8l\samples\server\examples\src\examples\ejb20\message

Enter the following command to rebuild and redeploy the MDB:
> ant

As the build completes, you should see messages in the WebLogic Server
Examples Server window indicating that it is activating the "message"
application.

TIBCO Enterprise Message Service Application Integration Guide

88 | Chapter 8 Integrating With WebLogic Server 8.1

Running the Example MDB Client

In the window used to rebuild and redeploy the Example MDB, enter:
> ant run

You should see the same results in the WebLogic Server Examples Server window
as when you ran the example with WebLogic Server JMS.

To show that TIBCO Enterprise Message Service is driving the MDB, you could
start another command prompt window and run the TIBCO Enterprise Message
Service tibjmsTopicSubscriber sample as follows:

> java tibjmsTopicSubscriber -topic quotes

When you run the example MDB client, you should see that the
tibjmsTopicSubscriber program receives the messages published by the example
MDB client, along with the WebLogic Server.

TIBCO Enterprise Message Service Application Integration Guide

Modifying this Example to Use SSL Communication | 89

Modifying this Example to Use SSL Communication

This section describes how to modify the above example to use SSL
communications between the TIBCO Enterprise Message Service server, the
WebLogic Server 8.1, and the client program. This section assumes you have
already set up and run the example detailed in the previous sections.

Add the SSL JAR Files and New JNDI Properties File to the CLASSPATH

Modify the WebLogic Server 8.1 environment setup script, setExamplesEnv. cmd
in the directory C:\bea\weblogic81l\samples\domains\examples. This script is
used to setup the environment to run the examples and the examples WebLogic
server.

To add SSL JAR Files and New JNDI Properties File to the WLS 8.1
CLASSPATH:

1. Open the file named setExamplesEnv.cmd.

2. Add the following jar files to the end of the CLASSPATH and save the file.

C:\Tibco\ems\clients\java\jcert.jar;C:\Tibco\ems\clients\java\
jnet.jar;C:\Tibco\ems\clients\java\jsse.jar;C:\Tibco\ems\
clients\java\tibcrypt.jar; C:\Tibcol\ems\clients\java

3. Create a new file named jndi.properties, add the following lines and save
it to the directory C:\Tibco\EMS\clients\java.

com.tibco.tibjms.naming.security_protocol=ssl
com.tibco.tibjms.naming.ssl_enable_verify host=false

These properties specify that the "SSL" protocol should be used for JNDI
lookups and that host verification is turned off (the client will trust any host).
JNDI reads this file automatically and adds the properties to the environment
of the initial JNDI context.

Configure the TIBCO Enterprise Message Service Server for SSL

In C:\Tibco\EMS\bin\tibemsd. conf, add the following lines:

listen = ssl://localhost:7243
ssl_server_identity = certs/server.cert.pem
ssl_server_key = certs/server.key.pem
ssl_password = password

listen = tcp://localhost:7222

TIBCO Enterprise Message Service Application Integration Guide

90 | Chapter 8 Integrating With WebLogic Server 8.1

These lines explicitly set the tcp and ssl listen ports and specify the three required
server-side SSL parameters identity, private key, and password.

Save the file, then stop and restart the TIBCO Enterprise Message Service server.
When the server restarts, you should see messages like the following in the
console window confirming SSL is enabled:

2003-06-14 10:00:05 Secure Socket Layer is enabled, using openSSL <uversion>

2003-06-14 10:00:05 Accepting connections on ssl://<machineName>:7243.
2003-06-14 10:00:05 Accepting connections on tcp://<machineName>:7222.

Modify the foreign JMSConnectionFactory in WebLogic to point to an
SSLConnectionFactory

In the web browser load the page,

http://<machineName>: 7001/examplesWebApp/index. jsp. Click on the
Administration Console link. Enter weblogic as the Username and Password and
click Sign In.

1. In the left pane, select examples->services->JMS->Foreign JMS
Servers->TIBCO JMSServer.

2. In the right pane, replace the contents of the JNDI Connection URL box with
tibjmsnaming://localhost: 7243. Click Apply.

3. Inthe left pane, select examples->services->JMS->Foreign JMS
Servers->TIBCO JMSServer->Foreign JMSConnectionFactories->TIBCO
JMSTopicConnectionFactory.

4. In the right pane, replace the contents of the Local JNDI Name box with
TIBCO.tcf and the contents of the Remote JNDI Name box with
SSLTopicConnectionFactory. Click Apply.

Modify the Example Client Program for SSL-Based Communication

The modifications necessary for the example client program are similar to those
that were necessary for MDB:

1. IncClient.java, change the string TopicConnectionFactory to
SSLTopicConnectionFactory.

2. Inbuild.xml, change the port number 7222 to 7243 for the URL.

Rebuilding and Redeploying the Example MDB

Restart the WebLogic Server Examples Server so that it picks up the SSL related
changes to the environment.

TIBCO Enterprise Message Service Application Integration Guide

Modifying this Example to Use SSL Communication | 91

From the example MDB source directory, enter the command:

> ant

As the build completes, you should see messages in the WebLogic Server
Examples Server window indicating that it is activating the "message"
application.

Running the Example MDB Client with SSL

Create a new command prompt window and run the examples setup script,
setExamplesEnv.cmd, so that the SSL related changes to the environment are
picked up.

From the example MDB source directory, enter the command:
> ant run

You should see the same messages sent by the client and received by the MDB in
the WebLogic server window. You may notice that this example runs slightly
slower than the non-SSL version. This is because of the SSL handshake that occurs
before the messages are displayed.

To show that SSL communications are in fact occurring, you could remove the
SSL settings you added to tibemsd.conf. Then restart the TIBCO Enterprise
Message Service server and the WebLogic Server. If you check the WebLogic
Server logs, you should see exceptions thrown indicating that it could not
connect. If you now run the test program again, you should see that it throws an
exception indicating that it could not connect to the server using the SSL protocol.
Alternatively (or additionally), you could start the TIBCO Enterprise Message
Service server from a command prompt window and turn SSL debug tracing on,
as follows:

>tibemsd -ssl_debug_trace

Then, if you re-start WebLogic Server and re-run the test program, you will see
SSL debugging output on the tibemsd console window.

TIBCO Enterprise Message Service Application Integration Guide

92 | Chapter 8 Integrating With WebLogic Server 8.1

Modifying this Example to use Container Managed Transactions

and XA

This section describes how to modify the above example to support
container-managed transactions. In this modified example, TIBCO Enterprise
Message Service server participates in a distributed transaction started by
WebLogic server.

Modify the foreign JMSConnectionFactory in WebLogic to pointto a
XAConnectionFactory.

In the web browser, load the page,

http://<machineName>: 7001/examplesWebApp/index. jsp. Click on the
Administration Console link. Enter weblogic as the Username and Password and
click Sign In.

1.

In the left pane, select examples->services->JMS->Foreign JMS
Servers->TIBCO JMSServer->Foreign JMSConnectionFactories->TIBCO
JMSTopicConnectionFactory.

In the right pane, replace the contents of the Local JNDI Name box with
TIBCO.xatcf and the contents of the Remote JNDI Name box with
XATopicConnectionFactory. Click Apply.

Create a JMS Connection factory that supports XA

To create the JMS Connection factory that supports XA, perform the following:

1.

Start the TIBCO Enterprise Message Service administration tool by selecting
Start->Programs->TIBCO Enterprise Message Service 4.3->Start EMS
Administration Tool from the Windows Start menu.

Enter the following commands:

> connect
> create factory XATopicConnectionFactory xatopic

Modifying the WebLogic Deployment files to make MDB to use transactions

1.

Add the following lines to ejb-jar.xml, within the <ejb-jar> descriptor,
after the <enterprise-beans> descriptor:

<assembly-descriptor>

TIBCO Enterprise Message Service Application Integration Guide

Modifying this Example to use Container Managed Transactions and XA | 93

<container-transaction>
<method>
<ejb-name>exampleMessageDrivenl</ejb-name>
<method-name>*</method-name>
</method>
<method>
<ejb-name>exampleMessageDriven2</ejb-name>
<method-name>*</method-name>
</method>
<trans-attribute>Required</trans-attribute>
</container-transaction>
</assembly-descriptor>

Change the element <connection-factory-jndi-name> in the file
weblogic-ejb-jar.xml. To use a message driven bean with container
managed transactions, it should use a JMS connection factory that supports
XA. Change the value of the element <connection-factory-jndi-name> to
TIBCO.xatcf

Rebuild, redeploy, and run the example MDB in the same manner as
described in the previous sections.

TIBCO Enterprise Message Service Application Integration Guide

94 | Chapter 8 Integrating With WebLogic Server 8.1

TIBCO Enterprise Message Service Application Integration Guide

Chapter 9

Topics

95

Integrating With WebLogic Server 7.0

This chapter describes how to use TIBCO Enterprise Message Service to drive a
Message Driven Bean (MDB) inside WebLogic Server 7.0. The examples in this
chapter use the preconfigured Examples server and the example MDB that comes
bundled as a sample with WebLogic Server 7.0.

The examples in this chapter assume you have installed WebLogic Server 7.0 on a
Windows platform.

* Running the Example MDB with WebLogic Server, page 96

o Configuring the Example MDB, page 97

® Rebuilding and Redeploying the Example MDB, page 100

* Running the Example MDB Client, page 101

* Modifying this Example to Use SSL Communication, page 102

* Modifying this Example to use Container Managed Transactions and XA, page 105

TIBCO Enterprise Message Service Application Integration Guide

96 | Chapter 9 Integrating With WebLogic Server 7.0

Running the Example MDB with WebLogic Server

You should run the example MDB using WebLogic Server to ensure the MDB is
configured and deployed properly.

The source code for the example MDB is in:

C:\bea\weblogic700\samples\server\src\examples\ejb20\message

The file package-summary.html in that directory contains instructions for
building and running the example MDB inside the Examples server. Follow the
instructions detailed in that file for running the example MDB.

One thing the instructions fail to explicitly state is that you need to navigate to the
% MDB source code directory, given above, when you execute the command to run
the MDB client (that is, the command ant run).

TIBCO Enterprise Message Service Application Integration Guide

Configuring the Example MDB | 97

Configuring the Example MDB

You must make the following configuration changes to the WebLogic Server 7.0 to
drive the example MDB using TIBCO Enterprise Message Service instead of
WebLogic Server.

* Add the TIBCO Enterprise Message Service JAR file to the CLASSPATH of
WebLogic Server.

* Modify the deployment descriptor of the example MDB to specify the TIBCO
Enterprise Message Service initial context factory, provider URL, and
connection factory JNDI name.

e Modify the client program to look up its administered objects from the built-in
JNDI provider in TIBCO Enterprise Message Service.

¢ Create the appropriate JMS Destination object inside the TIBCO Enterprise
Message Service server using the administration tool.

These steps are described below.

Adding TIBCO Enterprise Message Service to the WebLogic Server

CLASSPATH

The WebLogic Server 7.0 environment setup and startup scripts check for the
existence of the environment variable EXT_PRE_CLASSPATH and a file named
extEnv.cmd. If the variable exists, WebLogic Server prepends its value to the
CLASSPATH. If the extEnv. cmd file exists, it is called when WebLogic Server starts.
To add TIBCO Enterprise Message Service to the WLS 7.0 CLASSPATH:

1. Create a file named extEnv. cmd that contains the following line:

set EXT_PRE_CLASSPATH=C:\Tibco\ems\clients\java\tibjms. jar

2. Save the file to the following location:

C:\bea\weblogic700\samples\server\config\examples

Modifying the MDB Deployment Descriptor for TIBCO Enterprise Message

Service

The source files for the example MDB deployment descriptor are found in the
example MDB source directory. Modify the file named weblogic-ejb-jar.xml.
The following lines must be inserted (in two separate places) inside the
<message-driven-descriptor> tag:

<initial-context-factory>

TIBCO Enterprise Message Service Application Integration Guide

98 | Chapter 9 Integrating With WebLogic Server 7.0

com.tibco.tibjms.naming.TibjmsInitialContextFactory
</initial-context-factory>
<provider-url>

tibjmsnaming://localhost:7222
</provider-url>
<connection-factory-jndi-name>

TopicConnectionFactory
</connection-factory-jndi-name>

Modifying the Client Program to Use TIBCO Enterprise Message Service JNDI

To use the JNDI provided by TIBCO Enterprise Message Service, the example
MDB client program must be modified in three areas: the source code, the build
script, and the runtime environment (that is, the CLASSPATH).

To modify the client source code:

The source file for the MDB client program is Client . java. Find and replace the
following strings in the source file:

Find: Replace With:

weblogic.jms.ConnectionFactory TopicConnectionFactory

weblogic.jndi.WLInitialContextFactory =~ com.tibco.tibjms.naming.TibjmsInitialContextFactory

There should be one occurrence of each of the above strings. When you are
finished, save your changes.

To modify the build script to run the client:

The client program is run by executing the ant build script with a target of run.
The build script passes the JNDI provider URL to the client program, and
therefore it must be modified to pass the provider URL of TIBCO Enterprise
Message Service.

The file build. xml in the example MDB source directory contains the build
script. Near the bottom of that file is the following line:

<arg value="t3://localhost:${PORT}"/>

Modify that line as follows:

<arg value="tibjmsnaming://localhost:7222" />

TIBCO Enterprise Message Service Application Integration Guide

Configuring the Example MDB | 99

To set the environment:

You have already specified that tibjms. jar should be added to the CLASSPATH
by creating a new command file in a previous section. To set the environment,
perform the following;:

1. Open a new command prompt window

2. Change directory to:
C:\bea\weblogic700\samples\server\config\examples>

3. Enter the following command:

> setExamplesEnv

Verify that tibjms. jar is present when the script echoes the CLASSPATH.

Creating the Example MDB Destination Object Inside TIBCO EMS
To create the example MDB destination objects, perform the following:

1. Start the TIBCO Enterprise Message Service server by selecting
Start->Programs->TIBCO Enterprise Message Service 4.3->Start JMS Server
from the Windows Start menu.

2. Start the TIBCO Enterprise Message Service administration tool by selecting
Start->Programs->TIBCO Enterprise Message Service 4.3->Start EMS
Administration Tool from the Windows Start menu.

3. Enter the following commands:

> connect
> create topic quotes

TIBCO Enterprise Message Service Application Integration Guide

100 | Chapter 9 Integrating With WebLogic Server 7.0

Rebuilding and Redeploying the Example MDB

If WebLogic Server 7.0 server is still running, restart it. This causes TIBCO
Enterprise Message Service to be added to its environment.

Using the window created in To set the environment: on page 99, change
directory to the example MDB source directory:

C:\bea\weblogic700\samples\server\src\examples\ejb20\message
Enter the following command to rebuild and redeploy the MDB:

> ant

As the build completes, you should see messages in the WebLogic Server
Examples Server window indicating that it is activating the "message"
application.

TIBCO Enterprise Message Service Application Integration Guide

Running the Example MDB Client | 101

Running the Example MDB Client

From the window used to rebuild and redeploy the Example MDB, navigate to
the example MDB source directory, then enter:

> ant run

You should see the same results in the WebLogic Server Examples Server window
as when you ran the example with WebLogic Server JMS. To show that TIBCO
Enterprise Message Service is driving the MDB, you could start another
command prompt window and run the TIBCO Enterprise Message Service
tibjmsTopicSubscriber sample as follows:

> java tibjmsTopicSubscriber -topic quotes

When you run the example MDB client, you should see that the
tibjmsTopicSubscriber program receives the messages published by the
example MDB client, along with the WebLogic Server.

TIBCO Enterprise Message Service Application Integration Guide

102 | Chapter 9 Integrating With WebLogic Server 7.0

Modifying this Example to Use SSL Communication

This section describes how to modify the above example to use SSL
communications between the TIBCO Enterprise Message Service server, the
WebLogic 7.0 Server, and the client program. This section assumes you have
already set up and run the example detailed in the previous sections.

Add the SSL JAR Files and New JNDI Properties File to the CLASSPATH

The following JAR files distributed with TIBCO Enterprise Message Service must
be added to the CLASSPATH:

jcert.jar

jnet.jar

jsse.jar

tibcrypt. jar

You can add them to the extEnv. cmd file that you created in Adding TIBCO
Enterprise Message Service to the WebLogic Server CLASSPATH on page 97.

Next, create a new file named jndi.properties containing the following lines:

com.tibco.tibjms.naming.security_protocol=ssl
com.tibco.tibjms.naming.ssl_enable_verify_host=false

Save the file to directory C:\Tibco\EMS\clients\java. This directory must then
also be added to the CLASSPATH in extEnv. cmd.

These properties specify that the "SSL" protocol should be used for JNDI lookups
and that host verification is turned off (the client will trust any host). JNDI reads
this file automatically and adds the properties to the environment of the initial
JNDI context.

Configure the TIBCO Enterprise Message Service Server for SSL

In C:\Tibco\EMS\bin\tibemsd. conf, add the following lines:

ssl://localhost:7243
certs/server.cert.pem
certs/server.key.pem
password
tcp://localhost: 7222

listen
ssl_server_identity
ssl_server_key
ssl_password

listen

These lines explicitly set the tcp and ss1 listen ports and specify the three
required server-side SSL parameters: identity, private key, and password.

TIBCO Enterprise Message Service Application Integration Guide

Modifying this Example to Use SSL Communication

Save the file, then stop and restart the TIBCO Enterprise Message Service server.
When the server restarts, you should see messages like the following in the
console window confirming SSL is enabled:

2002-03-19 13:48:34 Secure Socket Layer is enabled.
2002-03-19 13:48:34 Accepting connections on ssl://localhost:7243.
2002-03-19 13:48:34 Accepting connections on tcp://localhost:7222.

Configure Example MDB for SSL-Based Communication

Modify the file weblogic-ejb-jar.xml to change the values of the JNDI
provider URL and the connection factory JNDI name, as follows:

<provider-url>
tibjmsnaming://localhost:7243
</provider-url>
<connection-factory-jndi-name>
SSLTopicConnectionFactory
</connection-factory-jndi-name>

The provider URL is changed to connect to port 7243 (instead of 7222), and the
connection factory JNDI name is changed to specify the SSL-based topic
connection factory that comes preconfigured in TIBCO Enterprise Message
Service.

Modify the Example Client Program for SSL-Based Communication

The modifications necessary for the example client program are similar to those
that were necessary for MDB:

® IncClient.java, change the string "TopicConnectionFactory" to
"SSLTopicConnectionFactory'.

¢ Inbuild.xml, change the port number "7222" to "7243" for the URL.

Rebuilding and Redeploying the Example MDB

Restart the WebLogic Server Examples Server so that it picks up the changes to
the environment.

From the example MDB source directory, enter the command:

> ant

As the build completes, you should see messages in the WebLogic Server
Examples Server window indicating that it is activating the "message"
application.

TIBCO Enterprise Message Service Application Integration Guide

103

104 | Chapter 9 Integrating With WebLogic Server 7.0

Running the Example MDB Client with SSL

Create a new command prompt window and run the examples setup script so
that the changes to the environment are picked up.

From the example MDB source directory, enter the command:

> ant run

You should see the same messages sent by the client and received by the MDB in
the WebLogic server window. You may notice that this example runs slightly
slower than the non-SSL version. This is because of the SSL handshake that occurs
before the messages are displayed.

To show that SSL communications are in fact occurring, you could remove the
SSL settings you added to tibemsd.conf. Then restart the TIBCO Enterprise
Message Service server and the WebLogic Server. If you check the WebLogic
Server logs, you should see exceptions thrown indicating that it could not
connect. If you now run the test program again, you should see that it throws an
exception indicating that it could not connect to the server using the SSL protocol.

Alternatively (or additionally), you could start the TIBCO Enterprise Message
Service server from a command prompt window and turn SSL debug tracing on,
as follows:

>tibemsd -ssl_debug_trace

Then, if you re-start WebLogic Server and re-run the test program, you will see
SSL debugging output on the tibemsd console window.

TIBCO Enterprise Message Service Application Integration Guide

Modifying this Example to use Container Managed Transactions and XA | 105

Modifying this Example to use Container Managed Transactions
and XA

This section describes how to modify the above example to support
container-managed transactions. In this modified example, TIBCO Enterprise
Message Service server participates in a distributed transaction started by
WebLogic server.

Create a JMS Connection factory that supports XA.
To create the JMS Connection factory that supports XA, perform the following:

1. Start the TIBCO Enterprise Message Service administration tool by running
command

tibemsadmin

2. Enter the following commands

connect
create factory XATopicConnectionFactory xatopic

Modifying the Weblogic Deployment files to make MDB to use transactions

1. Add the following lines to ejb-jar . xml:

<assembly-descriptor>
<container-transaction>
<method>
<ejb-name>exampleMessageDrivenl</ejb-name>
<method-name>*</method-name>
</method>
<method>
<ejb-name>exampleMessageDriven2</ejb-name>
<method-name>*</method-name>
</method>
<trans-attribute>Required</trans-attribute>
</container-transaction>
</assembly-descriptor>

2. Change connection-factory-jndi-name in the file
weblogic-ejb-jar.xml. To use a message driven bean with container
manager transactions, it should use a JMS connection factory that supports
XA. Change connection-factory-jndi-name to
XATopicConnectionFactory.

TIBCO Enterprise Message Service Application Integration Guide

106 | Chapter 9 Integrating With WebLogic Server 7.0

Rebuild, redeploy, and run the example MDB in the same manner as described in
the previous sections.

TIBCO Enterprise Message Service Application Integration Guide

Chapter 10

Topics

107

Integrating With WebLogic Server 6.1

This chapter describes integrating TIBCO Enterprise Message Service with
WebLogic Server 6.1. You can share JMS messages in the same application
between TIBCO Enterprise Message Service and WebLogic Server. This is useful if
you wish to provide a gateway between the two JMS providers. You can also use
TIBCO Enterprise Message Service to drive a Message Driven Bean (MDB) inside
WebLogic Server with a J2EE application client.

* Using TIBCO Enterprise Message Service With WebLogic Server, page 108

* Using TIBCO Enterprise Message Service with WebLogic Server Message Driven
Beans, page 114

* Modifying This Example to use SSL Communication, page 118

TIBCO Enterprise Message Service Application Integration Guide

108 | Chapter 10 Integrating With WebLogic Server 6.1

Using TIBCO Enterprise Message Service With WebLogic Server

TIBCO Enterprise Message Service and WebLogic Server implement the same
JMS interface, JMS 1.1. Because of this, ConnectionFactories from both TIBCO
Enterprise Message Service and WebLogic Server can be used within the same
program to create the connections, sessions, queues, producers, consumers for
both JMS providers. Messages can then be sent and received between the two JMS
providers.

The JMS 1.1 interfaces are defined in the J2EE specification and are provided as
part of the J2EE platform in jms. jar. Table 1 lists where the implementations of
this interface are stored and the unique implementation name for both JMS
providers:

Table 1 TIBCO Enterprise Message Service and WebLogic Server JMS implementations

javax.jms.implementation Implementation
in: NETLE

Provider

TIBCO Enterprise java/tibjms. jar com.tibco.tibjms
Message Service

WebLogic Server lib/weblogic. jar weblogic.jms.*

In this example, only generic calls are used for creation of administrative objects,
and the TIBCO Enterprise Message Service server also acts as a JNDI provider.

For both JMS providers, the sample program performs the following:

The associated JNDI context is retrieved.

The JMS ConnectionFactory is looked up in that context.

A connection, session, queue, producer and sender are created.

A TIBCO Enterprise Message Service message is created.

The message is sent and received using TIBCO Enterprise Message Service.

The same message and sent and received using WebLogic Server.

N o kN =

The message is then sent and received again using TIBCO Enterprise Message
Service.

The Sample Program

Create a file named t . java that has the following contents:

/7‘:

TIBCO Enterprise Message Service Application Integration Guide

Using TIBCO Enterprise Message Service With WebLogic Server

This program defines an object that works for WLS JMS and TIBCO
JMS connection factories and queues. In the sample main, it
generates a TIBCO Enterprise Message Service provider message,
sends and receives it via TIBCO Enterprise Message Service,
sends and receives it via WebLogic Server, then sends and
receives it via TIBCO Enterprise Message Service.

« Usage: java t

* /

import
import
import
import

public

javax.jms.*;
javax.naming. *;
javax.naming.directory. *;
java.util.Hashtable;

class t {

public static final String TIBCOqcf = "QueueConnectionFactory";
public static final String WLSqcf =
"javax.jms.QueueConnectionFactory";

public static final String TIBCOgname = "myQueue";
public static final String WLSgname = "jms.queue.TestQueuel";

public static final String TIBCOurl =
"tibjmsnaming://localhost:7222";
public static final String WLSurl = "t3://localhost:7001";

public static final String TIBCOJNDIfactory =
"com.tibco.tibjms.naming.TibjmsInitialContextFactory";

public static final String WLSJNDIfactory =
"weblogic.jndi.WLInitialContextFactory";

public static void main(String[] args) {
JMSobject TIBCOobject = null;
JMSobject WLSobject = null;
TextMessage msg;
Context ctx;

try {
// Create the TIBCO Enterprise Message Service connection
// factory,
// connection, session, queue
TIBCOobject = new JMSobject(TIBCOurl, TIBCOJNDIfactory,
TIBCOgqcf, TIBCOgname);

// Create the WLS connection factory, connection, session,

// queue
WLSobject = new JMSobject(WLSurl, WLSJINDIfactory, WLSqcf,
WLSgname) ;

msg = TIBCOobject.JMSMessage("Test String");
TIBCOobject.JMSSend(msg);
msg = TIBCOobject.JMSReceive();

System.out.println("Received message: "+msg);

WLSobject.IJMSSend(msg) ;

TIBCO Enterprise Message Service Application Integration Guide

109

110 | Chapter 10 Integrating With WebLogic Server 6.1

msg = WLSobject.JMSReceive();
System.out.println("Received message: "+msg);

TIBCOobject.JMSSend(msg);
msg = TIBCOobject.JMSReceive();
System.out.println("Received message: "+msg);

} catch(JMSException je) {
System.out.println("Caught JMSException: "+je);
Exception le = je.getLinkedException();
if (le != null) System.out.println("Linked

exception: "+le);
je.printStackTrace();

} catch(Exception e) {
e.printStackTrace();
System.out.println("Caught Exception: "+e);

} finally {
try {

if (TIBCOobject != null)
TIBCOobject.JMSCleanup();
if (WLSobject != null)
WLSobject.JMSCleanup();
} catch (Exception e) { }

}

class JMSobject {
private Queue ioQueue;
private QueueSession session;
private QueueConnection connection;
private QueueConnectionFactory factory;
private QueueSender queueSender;
private QueueReceiver queueReceiver;
private InitialContext ctx;

JMSobject(String url, String jndi, String qcf, String gname)
throws Exception {

// Get the initial context
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY, jndi);
if (url != null)

env.put(Context.PROVIDER_URL, url);
env.put(Context.REFERRAL, "throw");
ctx = new InitialContext(env);

factory = (QueueConnectionFactory)ctx.lookup(gcf);
// Create a QueueConnection, QueueSession
connection = factory.createQueueConnection();
session = connection.createQueueSession(false,
Session.AUTO_ACKNOWLEDGE) ;

ioQueue = (Queue)ctx.lookup(gname);

connection.start();

TIBCO Enterprise Message Service Application Integration Guide

Using TIBCO Enterprise Message Service With WebLogic Server

queueSender = session.createSender(ioQueue);
queueReceiver = session.createReceiver(ioQueue);

}

TextMessage JMSMessage(String text) throws Exception {
TextMessage msg = session.createTextMessage();
msg.setText(text);
return(msg) ;

}

void JMSSend(TextMessage msg) throws Exception {
System.out.println("Sending the message on queue " +
ioQueue.getQueueName());

queueSender.send(msg) ;

}

TextMessage JMSReceive() throws Exception {
TextMessage msg;
System.out.println("Receiving the message on queue " +
ioQueue.getQueueName());
msg = (TextMessage)queueReceiver.receive(1000);

if (msg == null)
throw new JMSException("Failed to receive message");
return(msg) ;

}

void JMSCleanup() throws Exception {
if (session != null) {
session.close();
session = null;

}

if (connection != null) {
connection.close();
connection = null;

}

Configure WebLogic Server for the Test Program

1.

If you do not already have WebLogic Server, download and install WebLogic
Server 6.1 with Service Pack 1. You can retrieve the latest version (and a
30-day trial license, if needed) from

http:/ /commerce bea.com/downloads/weblogic_server.jsp#wls. Select the
Microsoft Windows NT /2000 platform (one executable file to download and
run). When installing WebLogic Server, choose the default WebLogic
Administration Domain Name: mydomain, default server name: myserver,
and default port: 7001.

Set up the WebLogic Server configuration to run JMS. In
C:\bea\wlserver6.1l\config\mydomain (modified based on where you

TIBCO Enterprise Message Service Application Integration Guide

111

112 | Chapter 10 Integrating With WebLogic Server 6.1

have installed WebLogic Server), modify config.xml to add the following
JMS objects before the final </domain> line:

<JMSServer Name="TestJMSServer" Targets="myserver'">
<IJMSQueue Name="TestQueuel" IJNDIName="jms.queue.TestQueuel" />
</JMSServer>

Configure TIBCO Enterprise Message Service within WebLogic Server

1. IncC:\bea\wlserver6.1l\config\mydomain (modified based on where you
have installed WebLogic Server), modify setEnv.cmd for TIBCO Enterprise
Message Service as follows:

@rem next line added for TIBCO Enterprise Message Service
set TIBJIJMS_ROOT=\tibco\JMS

@rem next line modified for TIBCO Enterprise Message Service
set CLASSPATH=%JAVA_HOME%\1lib\tools. jar;
%WIL_HOME%\1lib\weblogic_sp.lar;%WL_HOME%\lib\weblogic.jar;
%TIBIMS_ROOT%\java\jms.jar;%TIBIMS_ROOT%\java\jndi.jar;
%TIBIMS_ROOT%\java\tibjms.jar; %CLASSPATH%

2. In this same directory, modify startWebLogic.cmd as follows:

@rem next line added for TIBCO Enterprise Message Service
set TIBJIJMS_ROOT=\tibco\JMS

@rem next line modified for TIBCO Enterprise Message Service
set CLASSPATH=.;.\lib\weblogic_sp.jar;.\lib\weblogic.jar;
%TIBIMS_ROOT%\java\jms.jar;%TIBIJMS_ROOT%\java\jndi.jar;
%TIBIMS_ROOT%\java\tibjms. jar

Running WebLogic Server, TIBCO Enterprise Message Service, and the Test
Program

1. To set the environment, change directory to
C:\bea\wlserver6.1l\config\mydomain. Then run setEnv.cmd.

2. Compile the program, t.java using: javac t.java.

The program is already configured with the URL, default queue connection
factory, and JNDI factory of the WebLogic application server. The WebLogic
queue name matches the name in the config. xml file. The program is also
configured with the URL, queue connection factory, and JNDI factory of the
TIBCO Enterprise Message Service server. The TIBCO queue name matches
the name for the queue that will be created in the steps below.

3. Edit C:\Tibco\EMS\bin\queues.conf and add the following line at the end:

myQueue

This allows queue myQueue to be created.

TIBCO Enterprise Message Service Application Integration Guide

Using TIBCO Enterprise Message Service With WebLogic Server | 113

4. Start TIBCO Enterprise Message Service by selecting Start > Programs >
TIBCO Enterprise Message Service 4.3 > Start JMS Server from the
Windows Start menu.

5. Start the TIBCO Enterprise Message Service administration tool by selecting
Start > Programs > TIBCO Enterprise Message Service 4.3 > Start EMS
Administration Tool from the Windows Start menu. Enter the following
commands at the prompt:

connect

create factory QueueConnectionFactory queue
create queue myQueue

commit

VVVYV

6. Start WebLogic Server by selecting Start > Programs > BEA WebLogic
E-Business Platform > Weblogic Server 6.1 > Start Default Server from the
Windows Start menu, and enter the administrator password.

7. Run the test program by typing java t ata command prompt. You should see
messages indicating that the program sent and received the message by way
of TIBCO Enterprise Message Service, then sent and received the same
message via WebLogic Server, then sent and received the message using
TIBCO Enterprise Message Service again.

TIBCO Enterprise Message Service Application Integration Guide

114 | Chapter 10 Integrating With WebLogic Server 6.1

Using TIBCO Enterprise Message Service with WebLogic Server

Message Driven Beans

This section describes how to use TIBCO Enterprise Message Service to drive a
Message Driven Bean (MDB) within WebLogic Server. It assumes you have
already set up your environment as described in the previous section.

Configure WebLogic Server for the Sample MDB

This example assumes that the application directory for the MDB is
C:\Tibco\EMS\samples\client\bea\MDB. You can change the configuration
appropriately for a different directory.

1. Create an ejb-jar.xml file in the application directory as follows:

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD
Enterprise JavaBeans 2.0//EN"
"http://java.sun.com/dtd/ejb-jar_2_0.dtd">
<ejb-jar>
<enterprise-beans>
<message-driven>
<ejb-name>MDB</ejb-name>
<ejb-class>MDB</ejb-class>
<transaction-type>Container</transaction-type>
<message-driven-destination>
<destination-type>javax.jms.Queue
</destination-type>
</message-driven-destination>
<security-identity>
<run-as>
<role-name>everyone</role-name>
</run-as>
</security-identity>
</message-driven>
</enterprise-beans>
<assembly-descriptor>
<security-role>
<role-name>everyone</role-name>
</security-role>
</assembly-descriptor>
</ejb-jar>

This file defines the EJB with a class name of "MDB" (file name MDB. class).
The EJB container can manage transactions, and it specifies that the MDB
reads from a Queue. Security for the EJB and MDB is set so that everyone can
run it.

Elements in this file are defined in the E]JB 2.0 specification (see the EJB
documentation at http:/ /java.sun.com for more details).

TIBCO Enterprise Message Service Application Integration Guide

Using TIBCO Enterprise Message Service with WebLogic Server Message Driven Beans

Create a weblogic-ejb-jar.xml file in the same directory as follows:

<?xml version="1.0"7>
<!DOCTYPE weblogic-ejb-jar PUBLIC "-//BEA Systems, Inc.//DTD
WebLogic 6.0.0 EJB//EN"
"http://www.bea.com/servers/wls600/dtd/weblogic-ejb-jar.dtd">
<weblogic-ejb-jar>
<weblogic-enterprise-bean>
<ejb-name>MDB</ejb-name>
<message-driven-descriptor>
<pool>
<max-beans-in-free-pool>200
</max-beans-in-free-pool>
<initial-beans-in-free-pool>20
</initial-beans-in-free-pool>
</pool>
<destination-jndi-name>myQueue</destination-jndi-name>
<initial-context-factory>
com.tibco.tibjms.naming.TibjmsInitialContextFactory
</initial-context-factory>
<provider-url>tibjmsnaming://localhost:7222
</provider-url>
<connection-factory-jndi-name>QueueConnectionFactory
</connection-factory-jndi-name>
</message-driven-descriptor>
<jndi-name>MDB</jndi-name>
</weblogic-enterprise-bean>
<security-role-assignment>
<role-name>everyone</role-name>
<principal-name>system</principal-name>
</security-role-assignment>
</weblogic-ejb-jar>

This file further defines the EJB named MDB to indicate how to get to the
connection factory and the queue by specifying the JNDI names for the factory
and the destination and also the URL for the provider. This example points to
the same JNDI provider that was set up in the prior section, that is the TIBCO
Enterprise Message Service server, and it identifies myQueue as the JNDI
destination name for the MDB. This configuration also indicates that initially
20 beans will be deployed and up to 200 may be run if necessary to handle the
message traffic.

The elements in this file are WebLogic Server-specific extensions to the EJB 2.0
specification. This file is more completely described at
http:/ /edocs.bea.com/wls/docs60/ ejb /reference. html#1071166.

The source code for the message driven bean, MDB.java, is below. Save this
source as a file named MDB. java to the MDB directory.

import javax.ejb.CreateException;
import javax.ejb.MessageDrivenBean;
import javax.ejb.MessageDrivenContext;
import javax.jms.Message;

import javax.jms.Messagelistener;

TIBCO Enterprise Message Service Application Integration Guide

115

116

Chapter 10 Integrating With WebLogic Server 6.1

import javax.jms.TextMessage;

public class MDB implements MessageDrivenBean, Messagelistener {
private MessageDrivenContext context;

// Required - public constructor with no argument
public MDB () {}

// Required - ejbActivate
public void ejbActivate() {}

// Required - ejbRemove
public void ejbRemove() {
context = null;

}

// Required - ejbPassivate
public void ejbPassivate() {}

public void setMessageDrivenContext(
MessageDrivenContext mycontext) {
context = mycontext;

}

// Required - ejbCreate() with no arguments
public void ejbCreate () throws CreateException {}

// Implementation of Messagelistener - throws no exceptions
public void onMessage(Message msg) {
try {
System.out.println("MDB: + ((TextMessage)msg) .getText()
+ " Thread: " + Thread.currentThread().getName());
Thread.sleep(2000, 0);

}
catch(Exception e) { // Catch any exception
e.printStackTrace();

}

The following commands build the JAR file for the E]JB. You should use the
same console window where you invoked
C:\bea\wlserver6.1l\config\mydomain\setEnv.cmd in the last section.

mkdir build build\META-INF

copy ejb-jar.xml build\META-INF

copy weblogic-ejb-jar.xml build\META-INF
javac -d build MDB.java

cd build
jar cvf myejb.jar META-INF MDB.class
cd

java weblogic.ejbc -compiler javac build\myejb.jar MDB. jar

Add MDB. jar to the CLASSPATH in startWebLogic.cmd.

TIBCO Enterprise Message Service Application Integration Guide

Using TIBCO Enterprise Message Service with WebLogic Server Message Driven Beans | 117

6. The configuration file, . . /config/mydomain/config.xml, must be updated
to deploy the EJB by adding the following lines before the final </domain>
line:

<Application Name="MDB"
Path="C:\TIBCO\EMS\samples\client\bea\MDB">

<EJBComponent Name="MDB" URI="MDB.jar" Targets="myserver"/>
</Application>

7. The program, t.java, must be modified so that it only creates a foreign J]MS
provider message and sends it (take out the lines after
TIBCOobject.JMSSend(msg); so you do not receive it — that is what the
MDB is for).

8. Recompile the test program using javac t.java.

Run This Example

1. The TIBCO Enterprise Message Service server should still be running from the
previous section, and therefore the administered objects
QueueConnectionFactory and myQueue have already been created. In this
example, the WebLogic Server, rather than the test program, reads from that
queue.

2. Restart WebLogic Server so that the modifications for the MDB take effect.
When WebLogic Server starts, it echoes the CLASSPATH it is using. Make sure
the cLASSPATH includes the TIBCO Enterprise Message Service JAR files as
well as the MDB. jar file.

3. Run the test program.

> java t

You should see the messages that are sent by the client and received by the
MDB printing in the WebLogic Server window.

TIBCO Enterprise Message Service Application Integration Guide

118 | Chapter 10 Integrating With WebLogic Server 6.1

Modifying This Example to use SSL Communication

This section describes how to modify the above example to use SSL
communications between the TIBCO Enterprise Message Service server,
WebLogic Server, and the client program (t . java). This section assumes you have
already set up and run the example detailed in the previous sections.

Add the SSL JAR Files and New JNDI Properties File to the CLASSPATH

1.

The following JAR files, distributed with TIBCO Enterprise Message Service,
must be added to the CLASSPATH settings in both setEnv.cmd and
startWebLogic.cmd:

jcert.jar
jnet.jar
jsse.jar
tibcrypt.jar

Create a new file named jndi.properties containing the following lines:

com.tibco.tibjms.naming.security_protocol=ssl
com.tibco.tibjms.naming.ssl_enable_verify_ host=false

Save the file to directory C:\Tibco\EMS\clients\java. This directory must
then be added to the CLASSPATH in both setEnv.cmd and
startWebLogic.cmd.

These properties specify that the "SSL" protocol should be used for JNDI lookups
and that host verification is turned off (the client will trust any host). JNDI reads
this file automatically and adds the properties to the environment of the initial
JNDI context.

Configure the TIBCO Enterprise Message Service Server for SSL

1.

In C:\Tibco\EMS\bin\tibemsd. conf, add the following lines:
listen = ssl://localhost:7223

ssl_server_identity = certs/server.cert.pem
ssl_server_key = certs/server.key.pem

ssl_password = password

listen = tcp://localhost:7222

These lines explicitly set the tcp and ssl listen ports, and specify the three
required server-side SSL parameters: identity, private key, and password.

TIBCO Enterprise Message Service Application Integration Guide

Modifying This Example to use SSL Communication

Save the file, then stop and restart the TIBCO Enterprise Message Service
server. When the server restarts, you should see messages like the following in
the console window confirming SSL is enabled:

2002-03-19 13:48:34 Secure Socket Layer is enabled.
2002-03-19 13:48:34 Accepting connections on ssl://localhost:7223.
2002-03-19 13:48:34 Accepting connections on tcp://localhost:7222.

3.

Start the administration tool, tibemsadmin. Then create a
QueueConnectionFactory that establishes SSL connections. To do this, enter
the following commands at the tibemsadmin prompt:

> connect
> create factory sslQCF queue url=ssl://localhost:7223
ssl_verify_host=disabled

In the above command, the SSL parameter "url" specifies that connections
created by this factory will use the SSL protocol and connect on port 7223. The
SSL parameter "ss1_verify_host" is set to disabled so that a server-side
certificate property is not required (the client will trust any server). This is the
simplest SSL configuration.

Configure WebLogic Server for SSL-Based Communication

1.

The file weblogic-ejb-jar.xml file must be modified to change the values of
the JNDI provider URL and the connection factory JNDI name, as follows:

<provider-url>
tibjmsnaming://localhost:7223
</provider-url>
<connection-factory-jndi-name>ss1QCF
</connection-factory-jndi-name>

The provider URL is changed to connect to port 7223 (instead of 7222), and the
connection factory JNDI name is changed to specify the SSL-based queue
connection factory that was created in the previous step.

Rebuild the JAR file for the EJB. From the build directory, enter the following
commands:

jar cvf myejb.jar META-INF MDB.class
cd
java weblogic.ejbc -compiler javac build\myejb.jar MDB. jar

Stop and restart the WebLogic Server server.

Modify the Test Program for SSL-Based Communication

The modifications necessary for the test program are similar to those that were
necessary for WebLogic Server:

TIBCO Enterprise Message Service Application Integration Guide

119

120

Chapter 10 Integrating With WebLogic Server 6.1

¢ Change the value of the TIBCOqgcf variable to "ss1QCF".
¢ Change the value of the port number in the TIBCOurl variable to "7223".

Save and recompile the program.

Re-Run this Example

Run the test program:

>java t

You should see the same messages sent by the client and received by the MDB in
the WebLogic server window. You may notice that this example runs slightly
slower than the non-SSL version. This is because of the SSL handshake that occurs
before the messages are displayed.

To prove that SSL communications are in fact occurring, you could remove the
SSL settings you added to tibemsd. conf described in Configure the TIBCO
Enterprise Message Service Server for SSL on page 118. Then restart the TIBCO
Enterprise Message Service server and the WebLogic Server. You should find that
the message normally printed indicating that the server is running in production
mode never gets printed. The reason is that WebLogic Server cannot perform the
SSL-based JNDI lookup of the connection factory, and it continues to retry forever.
If you now run the test program again, you should see that it throws an exception
indicating that it could not connect to the server using the SSL protocol.

Alternatively (or additionally), you could start the TIBCO Enterprise Message
Service server from a command prompt window and turn SSL debug tracing on,
as follows:

>tibemsd -ssl_debug_trace

Then if you re-start WebLogic Server and re-run the test program you will see SSL
debugging output on the tibemsd console window.

TIBCO Enterprise Message Service Application Integration Guide

Chapter 11

Topics

121

Integrating With IBM WebSphere
Application Server Version 5

This chapter describes integrating TIBCO Enterprise Message Service with IBM
WebSphere Application Server Version 5. Specifically, a J2EE client can use TIBCO
Enterprise Message Service to trigger a Message Driven Bean (MDB) inside the
WebSphere Application Server and also have the MDB send the received message
back to the client.

* Qverview of Integrating With IBM WebSphere, page 122

* Get the sample MDB running with the WebSphere Embedded [MS Provider, page 123
® Get the Sample MDB running with TIBCO Enterprise Message Service, page 126

* Modify the Samples to Use SSL Communications, page 137

TIBCO Enterprise Message Service Application Integration Guide

122 | Chapter 11 Integrating With IBM WebSphere Application Server Version 5

Overview of Integrating With IBM WebSphere

The IBM WebSphere Application Server has two message-driven bean samples
that separately demonstrate publish-and-subscribe (topic-based) and
point-to-point (queue based) messaging. Each of these sample applications
includes a simple MDB and J2EE application client program. The examples
illustrate how to trigger the MDB within the WebSphere Application Server using
the external client program by way of the WebSphere embedded JMS provider.

This chapter is divided into the following sections:

* Get the sample MDB running with the WebSphere Embedded JMS Provider
— provides step-by-step instructions for running the sample MDBs using the
WebSphere embedded JMS provider. This ensures that the MDBs are
configured and deployed properly.

* Get the Sample MDB running with TIBCO Enterprise Message Service —
demonstrates how to reconfigure and run the same MDBs using TIBCO
Enterprise Message Service as the JMS provider within WebSphere.

Porting the sample MDBs from WebSphere embedded JMS to TIBCO
Enterprise Message Service does not require changing any of the MDB or
application client source code. TIBCO Enterprise Message Service is simply
added to WebSphere application server and client container as another JMS
provider. Then, the sample applications are reconfigured for the new JMS
provider resources and re-deployed.

e Modify the Samples to Use SSL Communications — details how to modify the
sample programs to use SSL as the communication protocol with TIBCO
Enterprise Message Service.

The instructions in this section assume you have already downloaded and
installed WebSphere Application Server Version 5.0 Trial (plus embedded
messaging) on a Windows platform. The instructions also assume that TIBCO
Enterprise Message Service and WebSphere Application Server are both running
on the same machine.

TIBCO Enterprise Message Service Application Integration Guide

Get the sample MDB running with the WebSphere Embedded JMS Provider | 123

Get the sample MDB running with the WebSphere Embedded JMS

Provider

The WebSphere Embedded JMS Provider software is a separate (optional)
% download from the Application Server 5.0 Trial software. Be sure to download
and install it along with the Application Server.

Launch the Samples Gallery from the Windows Start menu.

Get the Publish and Subscribe Sample Working

The publish and subscribe sample consists of an application client that publishes
a message on one of three topics and an MDB that is listening on a fourth,
wildcard topic, that receives messages published on any of the first three. The
MDB prints the message it receives to the standard output.

1. Click on the "Message-driven beans" sample in navigation pane of the
Samples Gallery.

2. In the content pane, under “Publish and Subscribe”, choose “TechNotes”.

The page that is displayed contains the information that is needed to setup the
embedded JMS provider for this sample (described next).

3. Start the WebSphere Administrative Console and navigate to <your
server>->Resources->WebSphere JMS Provider.

4. In the content pane, under "Additional Properties" choose WebSphere Topic
Connection Factories.

5. Click the New button.

6. Enter the values given on the TechNotes page under "Defining properties for
topic connection factory".

7. Click the Apply button then click the OK button.
8. Choose WebSphere JMS Provider in the content pane.

9. In the content pane, under "Additional Properties" choose WebSphere Topic
Destinations.

10. Create four new topics with the property values given on the TechNotes page
under "Defining properties for topics".

11. In the WebSphere Administrative Console, navigate to <your
server>->Servers->Application Servers.

TIBCO Enterprise Message Service Application Integration Guide

124 | Chapter 11 Integrating With IBM WebSphere Application Server Version 5

12.

13.

14.

15.
16.

In the content pane, choose on the name of your server, then on Message
Listener Service, then on Listener Ports, then on
SamplePubSubListenerPort.

The values for these properties on the TechNotes are incorrect. Verify that the
following property values are set:

Initial State Started
Connection Factory JNDI name Sample/JMS/TCF
Destination JNDI name Sample/JMS/listen

Choose the "Message-driven beans" sample in the navigation pane of the
Samples Gallery.

In the content pane, under "Publish and Subscribe", click Configure and Run.

Follow the instructions there for running the sample and confirming that the
server received the message by examining the standard output log file.

found under install_root/Appserver/logs/<your server>.

% ‘ The standard output log file for your server is called SystemOut.log and can be

Get the Point-to-Point Sample Working

The point-to-point sample consists of an application client that sends a message to
a queue and an MDB that is configured to be triggered by messages on that
queue. The MDB takes the message it receives and sends it to a second queue
where the client receives it back and compares it to the original message it sent.

1.

Choose the "Message-driven beans" sample in the navigation pane of the
Samples Gallery.

In the content window, under "Point-to-Point", choose "TechNotes".

The page that is displayed contains the information that is needed to setup the
embedded JMS provider for this sample (described next).

In the WebSphere Administrative Console, navigate to: <your
server>->Resources->WebSphere JMS Provider.

In the content pane, under "Additional Properties” choose WebSphere Queue
Connection Factories.

Click the New button.

Enter the values given on the TechNotes page under "Defining properties for
queue connection factory".

Click the Apply button then click the OK button.

TIBCO Enterprise Message Service Application Integration Guide

10.

11.

12.

13.

14.

15.
16.

Get the sample MDB running with the WebSphere Embedded JMS Provider | 125

Choose WebSphere JMS Provider in the content pane.

In the content pane, under "Additional Properties" choose WebSphere Queue
Destinations.

Create two new queues with the property values given on the TechNotes page
under "Defining properties for queues".

In the WebSphere Administrative Console, navigate to <your
server>->Servers->Application Servers.

In the content pane, choose on the name of your server, then on Message
Listener Service, then on Listener Ports, then on SamplePtoPListenerPort.

The values for these properties on the TechNotes page are incorrect. Verify
that the following property values are set:

Initial State Started
Connection Factory JNDI name Sample/JMS/QCF
Destination JNDI name Sample/JMS/Q1

Choose the "Message-driven beans" sample in the navigation pane of the
Samples Gallery.

In the content pane, under "Point-to-Point", click Configure and Run.

Follow the instructions there for running the sample and confirming that the
MDB received and sent back the message to the client.

TIBCO Enterprise Message Service Application Integration Guide

126 | Chapter 11 Integrating With IBM WebSphere Application Server Version 5

Get the Sample MDB running with TIBCO Enterprise Message

Service

Create the TIBCO Enterprise Message Service Administered Objects

1. Start the TIBCO Enterprise Message Service server.

2. Start the admin tool and enter the following commands:

create
create
create
create
create
create
create
create
create

VVVVVYVVYVYV

factory sample.TCF topic

factory sample.QCF queue

topic sample.*

jndiname sample.listen topic sample.*

topic
topic
topic
queue
queue

sample

sample
sample
sample

.weather
sample.
.news
.Q1
.Q2

sport

Configure WebSphere for the TIBCO Enterprise Message Service JNDI Provider

1. Create a text file called jndi.properties in the directory
<install_root>\AppServer\lib\ext.

2. Add the following line into the file:

java.naming.factory.url.pkgs=com.tibco.tibjms.naming

3. Save the jndi.properties file.

This allows both the WebSphere application server and client container to find the
TIBCO Enterprise Message Service URLConnectionFactory when it encounters
the tibjmsnaming JNDI naming scheme.

Add TIBCO Enterprise Message Service as a JMS Provider to the Application

Server

Ll

Start the WebSphere application server (if you have not already done so).
Start the WebSphere Administrative Console.
Expand Resources and choose Generic JMS Providers.

Click the New button.

TIBCO Enterprise Message Service Application Integration Guide

5.

6.
7.
8.

Get the Sample MDB running with TIBCO Enterprise Message Service | 127

Enter the following values for the given properties:

Name TIBCO
Description TIBCO Enterprise Message Service
Classpath C:\tibco\EMS\clients\java\tibjms. jar

External Initial Context com.tibco.tibjms.naming.TibjmsInitialContextFactory
Factory

External Provider URL tibjmsnaming://localhost:7222
Click the OK button.
Click the Save button on the task bar at the top of the console window.

To have the changes take effect immediately, stop and restart the application
server.

More information about this task can be found in the WebSphere Application
Server Version 5 Documentation On-line InfoCenter under: Resources >
Messaging > Using JMS and messaging in applications > Administering JMS
WebSphere support > Installing and configuring a JMS provider > Defining a
generic JMS provider.

Configure JNDI Bindings for TIBCO Enterprise Message Service Connection
Factories for the Application Server

1.

SNBSS

From the WebSphere Administrative Console, expand Resources and choose
Generic JMS Providers.

In the content pane, choose TIBCO.
Scroll down and choose JMS Connection Factories.
Click the New button.

Enter the following values for the given properties:

Name TIBCOConnectionFactoryl

Type TOPIC

JNDI Name jms/ConnectionFactoryl
Description Sample Topic ConnectionFactory

External JNDI Name tibjmsnaming://localhost/sample.TCF

Click the OK button.
Click the New button.

TIBCO Enterprise Message Service Application Integration Guide

128 | Chapter 11 Integrating With IBM WebSphere Application Server Version 5

8. Enter the following values for the given properties:

Name TIBCOConnectionFactory

Type QUEUE

JNDI Name jms/ConnectionFactory
Description Sample Queue ConnectionFactory

External JNDI Name tibjmsnaming://localhost/sample.QCF
9. Click the OK button.

10. Click the Save button on the task bar of the Administrative Console (and Save
again to confirm),

11. To have the changes take effect immediately, stop and restart the application
server.

More information about this task can be found in the WebSphere Application
Server Version 5 Documentation On-line InfoCenter under: Resources >
Messaging > Using JMS and messaging in applications > Administering JMS
WebSphere support > Configuring JMS provider resources > Configuring
resources for a generic JMS provider > Configuring a JMS connection factory,
generic JMS provider.

Configure JNDI Bindings for TIBCO Enterprise Message Service Destinations
for the Application Server

1. From the WebSphere Administrative Console, expand Resources and choose
Generic JMS Providers.

2. In the content pane, choose TIBCO.

3. Scroll down and choose JMS Destinations.

4. Click the New button.

5. Enter the following values for the given properties:
Name Listen
Type TOPIC
JNDI Name jms/listen
Description Sample Listen Topic

External JNDI Name tibjmsnaming://localhost/sample.listen

6. Click the OK button.

TIBCO Enterprise Message Service Application Integration Guide

Get the Sample MDB running with TIBCO Enterprise Message Service

7. Repeat the previous steps to create the following additional destinations:
Name Type JNDI Name Description External JNDI Name
News TOPIC jms/news Sample tibjmsnaming://localhost/sample.news
News Topic
Sport TOPIC jms/sport Sample tibjmsnaming://localhost/sample. spor
Sport Topic ~ *©
Weather TOPIC jms/weather Sample tibjmsnaming://localhost/sample.weat
Weather her
Topic
Q1 QUEUE jms/Q1 Sample Q1 tibjmsnaming://localhost/sample.Ql
Queue
Q2 QUEUE jms/Q2 Sample QZ tibjmsnaming://localhost/sample.Q2
Queue
8. Click the Save button on the task bar of the Administrative Console (and Save
again to confirm).
9. To have the changes take effect immediately, stop and restart the application

server.

More information about this task can be found in the WebSphere Application
Server Version 5 Documentation On-line InfoCenter under: Resources >
Messaging > Using JMS and messaging in applications > Administering JMS
WebSphere support > Configuring JMS provider resources > Configuring
resources for a generic JMS provider > Configuring a JMS destination, generic
JMS provider.

Create new Listener Ports for TIBCO Enterprise Message Service

1.

SRS

From the WebSphere Administrative Console, expand Servers and choose
Application Servers.

In the content pane, choose the name of the application server.
In the Additional Properties Table, select Message Listener Service.
In the content pane, select Listener Ports.

In the content pane, click the New button.

TIBCO Enterprise Message Service Application Integration Guide

129

130 | Chapter 11 Integrating With IBM WebSphere Application Server Version 5

6. Enter the following values for the given listener port properties:

Name
Initial State

Description

ConnectionFactory JNDI Name
Destination JNDI Name

7. Click the OK button.

TIBCOPtoPListenerPort
Started

Listener Port for TIBCO Point to
Point

jms/ConnectionFactory

Jjms/Ql

8. Repeat the previous steps to create another listener port with the following

property values:

Name

Initial State

Description
ConnectionFactory JNDI Name
Destination JNDI Name

9. Click the Save button on the task bar of the Administrative Console (and Save

again to confirm).

TIBCOPubSubListenerPort
Started

Listener Port for TIBCO PubSub
jms/ConnectionFactoryl

jms/listen

10. Stop and restart the application server to have the changes take effect.

11. After the application server has restarted, use the WebSphere Administrative
Console to verify that the new listener ports are in their proper initial state.

To do this, expand Servers->Application Servers, then choose your server
name in the content pane, then on Message Listener Service and then on

Listener Ports. The new TIBCO listener ports should have a solid green arrow

under the status column indicating that they are started.

More information about this task can be found in the WebSphere Application
Server Version 5 Documentation On-line InfoCenter under: Applications > EJB

modules > Using message-driven beans in applications > Configuring message

listener resources for message-driven beans > Adding a new listener port.

Reassemble the Sample MDBs to Use the New TIBCO Enterprise Message

Service Listener Ports

1. Start the WebSphere Application Assembly Tool.

2. Open the MDBSamples. ear file located in the
<ﬁmeJ@w>/AppServer/samples/lib/MessageDrivenBeansdhednry

TIBCO Enterprise Message Service Application Integration Guide

10.
11.

12.
13.

Get the Sample MDB running with TIBCO Enterprise Message Service

In the navigation pane, expand MDBSamples->EJB
Modules->PSSampleMDB.jar.

Choose Message Driven Beans, then in the content pane, choose
PSSampleMDB.

Click the Bindings tab in the property pane.

Change the value of the Listener Port Name from SamplePubSubListenerPort
to TIBCOPubSubListenerPort.

Click the Apply button.

In the navigation pane, expand MDBSamples->EJB
Modules->PtoPSampleMDB.jar.

Choose Message Driven Beans, then in the content pane, choose
PtoPSampleMDB.

Click the Bindings tab in the property pane.

Change the value of the Listener Port Name from SamplePtoPListenerPort to
TIBCOPtoPListenerPort.

Click the Apply button.

Choose File->Save from the menu.

More information about this task can be found in the WebSphere Application
Server Version 5 Documentation On-line InfoCenter under: Applications > EJB
modules > Using message-driven beans in applications > Deploying an
enterprise application to use message-driven beans > Configuring deployment
attributes for a message-driven bean.

Redefine the Resource Reference and Resource Environment Reference for the
Point-to-Point Sample MDB

1.

In the navigation pane of the WebSphere Application Assembly Tool, under
MDBSamples, expand EJBModules->PtoPSampleMDB.jar->Message
Driven Beans->PtoPSampleMDB.

Choose Resource References. The name JMS/SamplePPQCF should appear
in the content pane.

Click the Bindings tab.

Change the value of JNDI Name from Sample/JMS/QCF to
tibjmsnaming://localhost/sample.QCFE.

Click the Apply button.

TIBCO Enterprise Message Service Application Integration Guide

131

132 | Chapter 11 Integrating With IBM WebSphere Application Server Version 5

10.

In the navigation pane, choose Resource Environment References. The name
JMS/SampleOutputQueue should appear in the content pane.

Click the Bindings tab.

Change the value of JNDI Name from Sample/JMS/Q2 to
tibjmsnaming://localhost/sample.Q2.

Click the Apply button.

Choose File->Save from the menu.

Redefine the Resource Environment References in the Application Client

Samples

10.

11.

12.

13.
14.

Expand MDBSamples->Application Clients->PSSampleClient->Resource
Environment References.

In the content pane, choose jms/news and then click the Bindings tab.

Change the value of the JNDI name from
thisNode/servers/serverl/Sample/JMS/news to
tibjmsnaming://localhost/sample.news.

Click the Apply button.
Choose jms/sport and then click the Bindings tab.

Change the value of the JNDI name from
thisNode/servers/serverl/Sample/JMS/sport to
tibjmsnaming://localhost/sample.sport.

Click the Apply button.
Choose jms/weather and then click the Bindings tab.

Change the value of the JNDI name from
thisNode/servers/serverl/Sample/JMS/weather to
tibjmsnaming://localhost/sample.weather.

Expand MDBSamples->Application Clients->PtoPSampleClient->Resource
Environment References.

Choose jms/Q1 and then click the Bindings tab.

Change the value of the JNDI name from
thisNode/servers/serverl/Sample/IJMS/Q1l to
tibjmsnaming://localhost/sample.Ql.

Click the Apply button.
Choose jms/Q2 and then click the Bindings tab.

TIBCO Enterprise Message Service Application Integration Guide

15.

16.
17.

Get the Sample MDB running with TIBCO Enterprise Message Service

Change the value of the JNDI name from
thisNode/servers/serverl/Sample/IMS/Q2 to
tibjmsnaming://localhost/sample.Q2.

Click the Apply button.

Choose File->Save, then File->Close to save and then close the Application
Assembly tool.

More information about this task can be found in the WebSphere Application
Server Version 5 Documentation On-line InfoCenter under: Applications > Client
Modules > Using application clients > Developing J2EE application client code.

Add TIBCO Enterprise Message Service as a JMS Provider to the Application

Client

6.
7.
8.

Start the WebSphere Application Client Resource Configuration Tool from a
console window by entering the following command:

install_root\AppServer\bin>clientConfig

Open the MDBSamples. ear file located in the
<install_root>/AppServer/samples/lib/MessageDrivenBeans directory.

Expand PSSampleClient. jar.
Right-click on JMS Providers and select New.

Enter the following values for the given properties:

Name TIBCO

Description TIBCO Enterprise Message Service

Classpath C:\Tibco\EMS\clients\java\tibjms. jar

ContextFactory Class com.tibco.tibjms.naming.TibjmsInitialContext
Factory

Provider URL tibjmsnaming://localhost:7222

Click the OK button.

Repeat the previous three steps for PtoPSampleClient. jar.

Save the EAR file by choosing File->Save from the menu.

More information about this task can be found in the WebSphere Application
Server Version 5 Documentation On-line InfoCenter under: Applications > Client
Modules > Using application clients > Deploying application clients >
Configuring Java messaging client resources > Configuring new JMS providers
with the Application Client Resource Configuration Tool.

TIBCO Enterprise Message Service Application Integration Guide

133

134 | Chapter 11 Integrating With IBM WebSphere Application Server Version 5

Configure the JNDI bindings for TIBCO Enterprise Message Service
Connection Fac_tories for the Application Client

1. Inthe Application Client Resource Configuration Tool for the
MDBSamples.ear file, expand PSSampleClient. jar->JMS
Providers->TIBCO.

2. Right-click on JMS Connection Factories and select New.

3. Enter the following values for the given properties:

Name TIBCOConnectionFactoryl

Description Sample Topic Connection Factory
JNDI Name jms/ConnectionFactoryl

External JNDI Name tibjmsnaming://localhost/sample.TCF
Connection Type TOPIC

4. Click the OK button.

5. Repeat the previous three steps for PtoPSampleClient. jar using the
following values:

Name TIBCOConnectionFactory

Description Sample Queue Connection Factory
JNDI Name jms/ConnectionFactory

External JNDI Name tibjmsnaming://localhost/sample.QCF
Connection Type QUEUE

6. Save the EAR file by choosing File->Save from the menu.
7. Close the MDBSamples.ear file (File->Close).

More information about this task can be found in the WebSphere Application
Server Version 5 Documentation On-line InfoCenter under: Applications > Client
Modules > Using application clients > Deploying application clients >
Configuring Java messaging client resources > Generic JMS connection factory
settings for application clients.

Update the Deployed Application on the Server

1. From the WebSphere Administrative Console, expand Applications and click
on Enterprise Applications.

2. Check the box in front of MDBSamples and click the Update button.

TIBCO Enterprise Message Service Application Integration Guide

N S G

*®

10.
11.

12.
13.

14.
15.

16.
17.

18.
19.
20.
21.

22.
23.

Get the Sample MDB running with TIBCO Enterprise Message Service | 135

Click the Browse button and locate the MDBSamples . ear file. On Windows, by
default, it is located in: C:\Program
Files\WebSphere\AppServer\samples\lib\MessageDrivenBeans.

Click the Next button.
Do not change any of the default settings on this page.
Click the Next button.

The "Step 1, Provide options to perform the installation" page appears. Do not
change any of the default settings on this page.

Click the Next button.

The "Step 2, Provide Listener Ports for Messaging Beans" appears. It should
already contain the names of the new listener ports previously created.

Click the Next button.

The "Step 3, Map resource references to resources” page appears. It should
already contain the binding for the jms/SamplePPQCEF reference for the
PtoPSampleMDB.

Click the Next button.

The “Step 4, Map resource env entry references to resources” page appears. It
should already contain the binding for the jms/SampleOutputQueue
reference for the PtoPSampleMDB.

Click the Next button.

The "Step 5, Map virtual hosts for web modules" page appears. Do not change
any of the default settings on this page.

Click the Next button.

The "Step 6, Map modules to application servers" page appears. Do not
change any of the default settings on this page.

Click the Next button.
The "Step 7, Summary" page appears.
Click the Finish button.

The message "Application MDBSamples installed successfully” appears in the
content window.

Choose Save to Master Configuration.

Click Save again.

TIBCO Enterprise Message Service Application Integration Guide

136 | Chapter 11 Integrating With IBM WebSphere Application Server Version 5

More information about this task can be found in the WebSphere Application
Server Version 5 Documentation On-line InfoCenter under: Applications >
Deployment > Deploying and managing applications > Updating Applications.

Run the Samples Application Client

1. From the <install_root>\samples\bin\MessageDrivenBeans directory, type:
RunPSclient. You should see the same results as you saw in part I for the
publish/subscribe sample.

2. From the <install_root>\samples\bin\MessageDrivenBeans directory, type:
RunPtoPclient. You should see the same results as you saw in part I for the
point-to-point sample.

TIBCO Enterprise Message Service Application Integration Guide

Modify the Samples to Use SSL Communications | 137

Modify the Samples to Use SSL Communications

This section describes how to modify the above samples to use SSL
communications between the TIBCO Enterprise Message Service server and
WebSphere application server and client container. This section assumes you have
already set up and run the samples over unencrypted connections detailed in the
previous sections.

Enable SSL in the TIBCO Enterprise Message Service Server

In C:\tibco\EMS\bin\tibemsd. conf, add the following lines:
listen = ssl://localhost:7243

ssl_server_identity = certs/server.cert.pem
ssl_server_key = certs/server.key.pem
ssl_password = password

listen = tcp://localhost:7222

These lines explicitly set the tcp and ssl listen ports and specify the three required
server-side SSL parameters: identity, private key, and password.

Save the file, stop and restart the TIBCO Enterprise Message Service server. When
it restarts you should see messages like the following in the console window
confirming SSL is enabled:

2003-01-13 13:48:34 Secure Socket Layer is enabled.

2002-01-13 13:48:34 Accepting connections on ssl://localhost:7243.
2002-01-13 13:48:34 Accepting connections on tcp://localhost:7222.

Create JNDI Names for the SSL Queue and Topic Connection Factories

TIBCO Enterprise Message Service is pre-configured with a sample SSL queue
and topic connection factory. This step will create new JNDI names for the sample
connection factories that are then be used throughout the rest of this section.

1. Verify that the SSL connection factories exist by starting the tibemsadmin tool
and entering the command show factories. The names
SSLQueueConnectionFactory and SSLTopicConnectionFactory should be
among the names displayed.

2. Create new JNDI names for the existing SSL connection factories by entering
the following commands:

> create jndiname sample.SSLQCF jndiname SSLQueueConnectionFactory
> create jndiname sample.SSLTCF jndiname SSLTopicConnectionFactory

TIBCO Enterprise Message Service Application Integration Guide

138 | Chapter 11 Integrating With IBM WebSphere Application Server Version 5

Add the Additional SSL JNDI Properties to WebSphere

s |

Edit the jndi.properties file created in Configure WebSphere for the TIBCO
Enterprise Message Service JNDI Provider on page 126 and add the following
lines:

com.tibco.tibjms.naming.security_protocol=ssl
com.tibco.tibjms.naming.ssl_enable_verify_host=false

These properties specify that the "SSL" protocol should be used for JNDI lookups,
and that host verification is turned off (the JMS client will trust any host).

For WebSphere 5.1, add the following line in addition to those above:

com.tibco.tibjms.naming.ssl_vendor=j2se-default

Configure SSL Communications Between the Application Server and the
TIBCO Enterprise Message Service Server

This procedure adds the additional jar files required for SSL to the CLASSPATH. It
also modifies the external provider URL and the external JNDI name properties of
the TIBCO JMS provider within the application server.

This causes the application server to connect to the SSL port on the TIBCO
Enterprise Message Service server for JNDI lookups of administered objects.
Additionally, the connection factory external JNDI names are modified to specify
SSL connection factories (connection factories that create SSL-based connections).

1. From the WebSphere Administrative Console, expand Resources->Generic
JMS Providers and choose TIBCO in the content pane.

2. Add the following lines to the Classpath property value:

C:\tibco\ems\clients\java\jcert.jar
C:\tibco\ems\clients\java\jnet. jar
C:\tibco\ems\clients\java\jsse.jar
C:\tibco\ems\clients\java\tibcrypt.jar

3. Change the port number of the External Provider URL property from 7222 to
7243.

4. Click the Apply button.

5. In the content pane under Additional Properties, choose JMS Connection
Factories.

6. Choose TIBCO Connection Factory.

7. For the External JNDI Name property value, add port 7243 after the host
specification and change the name of the factory that is looked up to
sample.SSLQCEF.

TIBCO Enterprise Message Service Application Integration Guide

Modify the Samples to Use SSL Communications | 139

That is, Change tibjmsnaming://localhost/sample.QCF to
tibjmsnaming://localhost:7243/sample.SSLQCF.

8. Click the OK button.

9. Repeat the above steps for TIBCO Connection Factory1, changing
tibjmsnaming://localhost/sample.TCF to
tibjmsnaming://localhost:7243/sample.SSLTCEF.

10. Navigate to Generic JMS Providers->TIBCO.
11. Choose JMS Destinations.

12. Modify the External JNDI Name value for each of the destinations to specify
port 7243.

13. Click the Save button on the task bar of the Administrative Console (and Save
again to confirm).

14. Stop and restart the application server to allow the changes to take effect.

Configure SSL Communications between the Point-to-Point Sample MDB and
the TIBCO Enterprise Message Service Server

This procedure modifies the resource reference and the resource environment
references of the point-to-point sample MDB. This causes the sample
point-to-point MDB to connect to the SSL port on the TIBCO Enterprise Message
Service server for JNDI lookups of administered objects.

Additionally, the connection factory external JNDI name is modified to specify a
SSL connection factory (connection factory that creates SSL-based connections).

1. Start the WebSphere Application Assembly Tool.

2. Open the MDBSamples. ear file located in the
<install_root>/AppServer/samples/lib/MessageDrivenBeans directory.

3. Expand EJBModules->PtoPSampleMDB.jar->Message Driven
Beans->PtoPSampleMDB.

4. Choose Resource References. The name JMS/SamplePPQCF should appear
in the content pane.

5. Click the Bindings tab.

6. Change the value of JNDI Name from

tibjmsnaming://localhost/sample.QCF to
tibjmsnaming://localhost:7243/sample.SSLQCF.

7. Click the Apply button.

TIBCO Enterprise Message Service Application Integration Guide

140 | Chapter 11 Integrating With IBM WebSphere Application Server Version 5

10.

11.
12.

In the navigation pane, choose Resource Environment References. The name
JMS/SampleOutputQueue should appear in the content pane.

Click the Bindings tab.

Change the value of JNDI Name from
tibjmsnaming://localhost/sample.Q2 to
tibjmsnaming://localhost:7243/sample.Q2.

Click the Apply button.

Choose File->Save from the menu.

Configure SSL Communications between the Application Client and the TIBCO
Enterprise Message Service Server

1.

10.
11.
12.
13.

14.

In the Application Assembly Tool, expand MDBSamples->Application
Clients->PSSampleClient->Resource Environment References.

In the content pane, choose jms/news and then click the Bindings tab.

Change the value of the JNDI name from
tibjmsnaming://localhost/sample.news to
tibjmsnaming://localhost:7243/sample.news.

Click the Apply button.
Repeat the above steps for the sport and weather destinations as well.

Expand MDBSamples->Application Clients->PtoPSampleClient->Resource
Environment References.

In the content pane, choose jms/Q1 and click the Bindings tab.

Change the value of the JNDI name from
tibjmsnaming://localhost/sample.Ql to
tibjmsnaming://localhost:7243/sample.Ql.

Click the Apply button.

Repeat the above steps for the Q2 destination.
Save the MDBSamples.ear file (File->Save).
Exit the Application Assembly Tool.

Start the WebSphere Application Client Resource Configuration Tool from a
console window by entering:

<install_root>\AppServer\bin>clientConfig

Open the MDBSamples. ear file located in the
<install_root>/AppServer/samples/lib/MessageDrivenBeans directory.

TIBCO Enterprise Message Service Application Integration Guide

15.
16.
17.

18.

19.
20.

21.

22.

23.
24.

25.
26.

Modify the Samples to Use SSL Communications | 141

Expand PSSampleClient.jar->JMS Providers.
Right-click on TIBCO and select Properties.
Append the following line to the end of the value for the Class Path property:

;C:\tibco\ems\clients\java\jcert.jar;
C:\tibco\ems\clients\java\jnet.jar;
C:\tibco\ems\clients\java\jsse.jar;
C:\tibco\ems\clients\java\tibcrypt.jar

Change the value of the Provider URL property from
tibjmsnaming://localhost: 7222 to tibjmsnaming://localhost:7243.

Click the OK button.

Expand PSSampleClient.jar->JMS Providers->TIBCO->JMS Connection
Factories.

Right-click on TIBCOConnectionFactoryl and select Properties.

Change the value of the External JNDI Name property from
tibjmsnaming://localhost/sample.TCF to
tibjmsnaming://localhost:7243/sample.SSLTCF.

Click the OK button.

Repeat the above steps for PtoPSampleClient. jar, again appending to the
Class Path:

;C:\tibco\ems\clients\java\jcert.jar;
C:\tibco\ems\clients\java\jnet.jar;
C:\tibco\ems\clients\java\jsse.jar;
C:\tibco\ems\clients\java\tibcrypt.jar

Change tibjmsnaming://localhost:7222 to
tibjmsnaming://localhost:7243.

Also Change tibjmsnaming://localhost/sample.QCF to
tibjmsnaming://localhost:7243/sample.SSLQCF.

Save the EAR file by choosing File->Save from the menu.

Close the MDBSamples. ear file.

27. Exit the Application Client Resource Configuration Tool.

Update the Deployed Application on the Server

Follow the same procedure to update the deployed application on the server as in
the previous section.

TIBCO Enterprise Message Service Application Integration Guide

142 | Chapter 11 Integrating With IBM WebSphere Application Server Version 5

Run the Samples Application Client

Run the samples application client again. You should see the same results.

TIBCO Enterprise Message Service Application Integration Guide

143

Chapter 12 Integrating With Sun Java System
Application Server 7

This chapter describes integrating TIBCO Enterprise Message Service with Sun
Java System Application Server 7.

Topics

® Run the MDB Sample with Built-In JMS, page 144
® Run the MDB Sample with TIBCO EMS, page 145
® Run the MDB Sample with TIBCO EMS using SSL, page 147

TIBCO Enterprise Message Service Application Integration Guide

144 | Chapter 12 Integrating With Sun Java System Application Server 7

Run the MDB Sample with Built-In JIMS

Configure

Build

Deploy

Run

Clean Up

These steps establish baseline behavior for the sample message-driven bean
(MDB) in JMS.

1. Ensure that install_dir\bin is in the PATH.
2. Start the application server.

3. Change directory to install_dir\samples\ejb\mdb\simple\src, and run the
following commands:

asant

asant deploy-jms-resource
asant deploy

The server log should indicate that the MDB is successfully deployed.

4. Change directory to
install_dir\domains\domainl\serverl\applications\j2ee-apps\mdb-simp
le_1, and run this command:

appclient -client mdb-simpleClient.jar -name SimpleMessageClient
-textauth

The console should display these lines:

Sending message: This is message 1
Sending message: This is message 2
Sending message: This is message 3

The server log should display these lines:

MESSAGE BEAN: Message received: This is message 1
MESSAGE BEAN: Message received: This is message 2
MESSAGE BEAN: Message received: This is message 3

5. Change directory to install_dir\samples\ejb\mdb\simple\src, and run these
commands:

asant clean
asant undeploy

6. Remove the directory:
install_dir\domains\domainl\serverl\applications\j2ee-apps\mdb-simp
le_1

TIBCO Enterprise Message Service Application Integration Guide

Run the MDB Sample with TIBCO EMS

Run the MDB Sample with TIBCO EMS

This section demonstrates the procedure for using the sample MDB with EMS.

Configure Application Server

In a web browser, access Sun’s Java System Administration Tool at
http: //host:admin_port

1. In the left frame, navigate the tree to the folder
AppServer Instances->serverl

2. In the right frame, click the JVM Settings tab, then the Path Settings link.

3. In the Classpath Suffix box, enter the filename
C:\tibco\ems\clients\java\tibjms. jar

4. Click the Save button.

5. To propagate these modifications to the server, click the General tab, then the
Apply Changes button. Then stop and restart the server instance.

Register JMS Resources with Application Server

6. Change directory to install_dir\bin, and run these commands:

asadmin multimode

asadmin>export AS_ADMIN_USER=admin AS_ADMIN_PASSWORD=password AS_ADMIN_HOST=hostname
AS_ADMIN_PORT=port AS_ADMIN_INSTANCE=server

asadmin>create-jndi-resource --jndilookupname QueueConnectionFactory --resourcetype
javax.jms.QueueConnectionFactory --factoryclass
com.tibco.tibjms.naming.TibjmsInitialContextFactory --enabled=true --property
java.naming.provider.url=tibjmsnaming\://localhost\:7222 jms/MyQcf
asadmin>create-jndi-resource --jndilookupname queue.sample --resourcetype
javax.jms.Queue --factoryclass com.tibco.tibjms.naming.TibjmsInitialContextFactory
--enabled=true --property java.naming.provider.url=tibjmsnaming\://localhost\:7222
jms/MyQueue

asadmin>reconfig serverl

Run the Sample

7. Ensure that the EMS server is running with the default configuration.

TIBCO Enterprise Message Service Application Integration Guide

145

146

Chapter 12 Integrating With Sun Java System Application Server 7

Build

Deploy

Run

Clean Up

8. Change directory to install_dir\bin. Modify appclient.bat by adding
C:\tibco\ems\clients\java\tibjms. jar to JVM_CLASSPATH.

9. Change directory to install_dir\samples\ejb\mdb\simple\src, then build and
deploy the sample using the following commands:

asant

asant deploy

The server log should indicate that the MDB is successfully deployed.

10. Change directory to
install_dir\domains\domainl\serverl\applications\j2ee-apps\mdb-simp
le_1, and run this command:

appclient -client mdb-simpleClient.jar -name SimpleMessageClient
-textauth

The console should display these lines:

Sending message: This is message 1
Sending message: This is message 2
Sending message: This is message 3

The server log should display these lines:

MESSAGE BEAN: Message received: This is message 1
MESSAGE BEAN: Message received: This is message 2
MESSAGE BEAN: Message received: This is message 3

11. Clean up the build and undeploy the sample MDB.

Change directory to install_dir\samples\ejb\mdb\simple\src, and run these
commands:

asant clean
asant undeploy

12. Remove the directory:
install_dir\domains\domainl\serverl\applications\j2ee-apps\mdb-simp
le_1

13. Undeploy JNDI resources:

asadmin>delete-jndi-resource jms/MyQcf
asadmin>delete-jndi-resource jms/MyQueue
asadmin>reconfig serverl

TIBCO Enterprise Message Service Application Integration Guide

Run the MDB Sample with TIBCO EMS using SSL | 147

Run the MDB Sample with TIBCO EMS using SSL

Configure the EMS Server

1. Ensure that these parameters are set in tibemsd. conf before starting the EMS
server:

listen
ssl_server_identity
ssl_server_key
ssl_password

ssl://localhost:7243
certs/server.cert.pem
certs/server.key.pem
password

Java Security Policy

2. If you use the default installation (and depending on the local Java setting),
you must grant the following permissions in your J25DK policy file
/jre/lib/security/java.policy.

permission java.util.PropertyPermission "com.sun.net.ssl.dhKeyExchangeFix",
"write";

permission java.util.PropertyPermission "java.protocol.handler.pkgs", "write";
permission java.security.SecurityPermission "putProviderProperty.SunJSSE";

permission java.security.SecurityPermission "insertProvider.SunJSSE";

Configure Application Server

3. Ina web browser, access Sun’s Java System Administration Tool at
http://host:admin_port

4. In the left frame, navigate the tree to the folder
AppServer Instances->serverl

5. In the right frame, click the JVM Settings tab, then the Path Settings link.

6. In the Classpath Suffix box, enter the following filenames, and click the Save
button:

C:\tibco\ems\clients\java\tibjms. jar
:\tibco\ems\clients\java\jcert.jar
:\tibco\ems\clients\java\jnet.jar
:\tibco\ems\clients\java\jsse.jar

:\tibco\ems\clients\java\tibcrypt.jar

TIBCO Enterprise Message Service Application Integration Guide

148

Chapter 12 Integrating With Sun Java System Application Server 7

7. To propagate these modifications to the server, click the General tab, then the
Apply Changes button. Then stop and restart the server instance.

8. If you are using a console configured in the previous section, omit this step
and continue to the next step.

If you have started a new console, change directory to install_dir\bin, and run
these commands:

asadmin multimode

asadmin>export AS_ADMIN_USER=admin AS_ADMIN_PASSWORD=password
AS_ADMIN_HOST=localhost AS_ADMIN_PORT=4848 AS_ADMIN_INSTANCE=serverl

9. Inall cases, run the following commands in the asadmin interface:

asadmin>create-jndi-resource --jndilookupname SSLQueueConnectionFactory
--resourcetype javax.jms.QueueConnectionFactory --factoryclass
com.tibco.tibjms.naming.TibjmsInitialContextFactory --enabled=true --property

java.naming.provider.url=tibjmsnaming\://localhost\:7243:com.tibco.tibjms.naming.se
curity_protocol=ssl:com.tibco.tibjms.naming.ssl_enable_verify_host=false jms/MyQcf

asadmin>create-jndi-resource --jndilookupname queue.sample --resourcetype
javax.jms.Queue --factoryclass com.tibco.tibjms.naming.TibjmsInitialContextFactory
--enabled=true --property
java.naming.provider.url=tibjmsnaming\://localhost\:7243:com.tibco.tibjms.naming. se
curity_protocol=ssl:com.tibco.tibjms.naming.ssl_enable_verify_host=false
jms/MyQueue

asadmin>reconfig serverl

10. Change directory to install_dir\samples\ejb\mdb\simple\src, then build and
deploy the sample using the following commands:

Build asant
Deploy asant deploy

The server log should indicate that the MDB is successfully deployed.

11. Add tibjms.jar, jcert.jar, jnet.jar, jsse.jar, and tibcrypt.jar to
JVM_CLASSPATH in appclient.bat.

Run 12. Change directory to
install_dir\domains\domainl\serverl\applications\j2ee-apps\mdb-simp
le_1, and run this command:

appclient -client mdb-simpleClient.jar -name SimpleMessageClient
-textauth

TIBCO Enterprise Message Service Application Integration Guide

Clean Up

Run the MDB Sample with TIBCO EMS using SSL | 149

The console should display these lines:

Sending message: This is message 1
Sending message: This is message 2
Sending message: This is message 3

The server log should display these lines:

MESSAGE BEAN: Message received: This is message 1
MESSAGE BEAN: Message received: This is message 2
MESSAGE BEAN: Message received: This is message 3

13. Clean up the build and undeploy the sample MDB.
Change directory to install_dir\Sample\ejb\mdb\Simple\src, and run these

commands:

asant clean
asant undeploy

14. Remove the directory:
install_dir\domains\domainl\serverl\applications\j2ee-apps\mdb-simp
le_1

15. Undeploy JNDI resources:
asadmin>delete-jndi-resource jms/MyQcf

asadmin>delete-jndi-resource jms/MyQueue
asadmin>reconfig serverl

TIBCO Enterprise Message Service Application Integration Guide

150 | Chapter 12 Integrating With Sun Java System Application Server 7

TIBCO Enterprise Message Service Application Integration Guide

Index

A

application servers 10

C

container-managed transactions 12, 16, 26, 30, 40, 45
customer support xvi

integrating with third-party application servers 10

S

support, contacting xvi

T

technical support xvi
third-party application servers 10
transactions, container-managed 12, 16, 26, 30, 40, 45

TIBCO Enterprise Message Service Application Integration Guide

151

152 Index

TIBCO Enterprise Message Service Application Integration Guide

	TIBCO Enterprise Message Service™
	Contents
	Figures
	Tables
	Preface
	Related Documentation
	TIBCO Enterprise Message Service Documentation
	Other TIBCO Product Documentation
	Third Party Documentation

	How to Contact TIBCO Customer Support

	Chapter�1 Using JNDI With Third-Party Naming/Directory Services
	Overview of Using JNDI With Third-Party Naming/Directory Services
	Storing Administered Objects in a Naming/Directory Service
	Retrieving Administered Objects from a Naming/Directory Service

	Chapter�2 Overview of Third-Party Application Servers
	Third Party Application Servers

	Chapter�3 Integrating With JBoss 4.0.2
	Overview of Integrating With JBoss 4.0.2
	Get the Example MDB Working Using JBossMQ
	Get the Example MDB Working Using TIBCO Enterprise Message Service
	Modify the Example to use SSL Communications
	Adding the SSL JAR Files to the CLASSPATH for the JBoss Server
	Configuring the TIBCO Enterprise Message Service Server for SSL
	Configuring JBoss for SSL-based JMS Communications
	Stop and restart the JBoss server
	Adding the SSL JAR Files to the CLASSPATH for the Client Program
	Adding the SSL JNDI Properties for the Client Program
	Modify and Rebuild the Client
	Re-Run the Client Program

	Container-Managed Transactions (XA)

	Chapter�4 Integrating With JBoss 3.2.3
	Overview of Integrating With JBoss 3.2.3
	Get the Example MDB Working Using JBossMQ
	Get the Example MDB Working Using TIBCO Enterprise Message Service
	Modify the Example to use SSL Communications
	Adding the SSL JAR Files to the CLASSPATH for the JBoss Server
	Configuring the TIBCO Enterprise Message Service Server for SSL
	Configuring JBoss for SSL-based JMS Communications
	Stop and restart the JBoss server
	Adding the SSL JAR Files to the CLASSPATH for the Client Program
	Adding the SSL JNDI Properties for the Client Program
	Modify and Rebuild the Client
	Re-Run the Client Program

	Container-Managed Transactions (XA)

	Chapter�5 Integrating With JBoss 3.0.4
	Overview of Integrating With JBoss 3.0.4
	Get the Example MDB Working Using JBossMQ
	Get the Example MDB Working Using TIBCO Enterprise Message Service
	Modify the Example to use SSL Communications
	Adding the SSL JAR Files to the CLASSPATH for the JBoss Server
	Configuring the TIBCO Enterprise Message Service Server for SSL
	Configuring JBoss for SSL-based JMS Communications
	Stop and restart the JBoss server
	Adding the SSL JAR Files to the CLASSPATH for the Client Program
	Adding the SSL JNDI Properties for the Client Program
	Modify and Rebuild the Client
	Re-Run the Client Program

	Container-Managed Transactions (XA)

	Chapter�6 Integrating With Borland Enterprise Server 5.1
	Configure Borland Enterprise Server to use TIBCO Enterprise Message Service
	Configure TIBCO Enterprise Message Service for the Example Program
	Configure Borland Enterprise Server for the Example Message Driven Bean
	Using Container-Managed XA Transactions
	Using XA Transactions That Are Not Container-Managed

	Building and Deploying the Example MDB and the Example Client
	Running This Example
	Modifying This Example to use SSL Communications

	Chapter�7 Integrating With Borland Enterprise Server 5.0
	Configure Borland Enterprise Server to use TIBCO Enterprise Message Service
	Configure TIBCO Enterprise Message Service for the Example Program
	Configure Borland Enterprise Server for the Example Message Driven Bean
	Building and Deploying the Example MDB and the Example Client
	Running This Example
	Modifying This Example to use SSL Communications

	Chapter�8 Integrating With WebLogic Server 8.1
	Running the Example MDB with WebLogic Server
	Configuring the Example MDB
	Adding TIBCO Enterprise Message Service to the WebLogic CLASSPATH
	Creating Foreign JMSServer, JMSConnectionFactory, and JMSDestination in WebLogic
	Creating the Example MDB Destination Object Inside TIBCO EMS
	Modifying the weblogic-ejb-jar.xml file for MDB
	Modifying the Client Program to Use TIBCO Enterprise Message Service JNDI

	Rebuilding and Redeploying the Example MDB
	Running the Example MDB Client
	Modifying this Example to Use SSL Communication
	Add the SSL JAR Files and New JNDI Properties File to the CLASSPATH
	Configure the TIBCO Enterprise Message Service Server for SSL
	Modify the foreign JMSConnectionFactory in WebLogic to point to an SSLConnectionFactory
	Modify the Example Client Program for SSL-Based Communication
	Rebuilding and Redeploying the Example MDB
	Running the Example MDB Client with SSL

	Modifying this Example to use Container Managed Transactions and XA
	Modify the foreign JMSConnectionFactory in WebLogic to point to a XAConnectionFactory.
	Create a JMS Connection factory that supports XA
	Modifying the WebLogic Deployment files to make MDB to use transactions

	Chapter�9 Integrating With WebLogic Server 7.0
	Running the Example MDB with WebLogic Server
	Configuring the Example MDB
	Adding TIBCO Enterprise Message Service to the WebLogic Server CLASSPATH
	Modifying the MDB Deployment Descriptor for TIBCO Enterprise Message Service
	Modifying the Client Program to Use TIBCO Enterprise Message Service JNDI
	Creating the Example MDB Destination Object Inside TIBCO EMS

	Rebuilding and Redeploying the Example MDB
	Running the Example MDB Client
	Modifying this Example to Use SSL Communication
	Add the SSL JAR Files and New JNDI Properties File to the CLASSPATH
	Configure the TIBCO Enterprise Message Service Server for SSL
	Configure Example MDB for SSL-Based Communication
	Modify the Example Client Program for SSL-Based Communication
	Rebuilding and Redeploying the Example MDB
	Running the Example MDB Client with SSL

	Modifying this Example to use Container Managed Transactions and XA
	Create a JMS Connection factory that supports XA.
	Modifying the Weblogic Deployment files to make MDB to use transactions

	Chapter�10 Integrating With WebLogic Server 6.1
	Using TIBCO Enterprise Message Service With WebLogic Server
	Using TIBCO Enterprise Message Service with WebLogic Server Message Driven Beans
	Modifying This Example to use SSL Communication

	Chapter�11 Integrating With IBM WebSphere Application Server Version 5
	Overview of Integrating With IBM WebSphere
	Get the sample MDB running with the WebSphere Embedded JMS Provider
	Get the Publish and Subscribe Sample Working
	Get the Point-to-Point Sample Working

	Get the Sample MDB running with TIBCO Enterprise Message Service
	Create the TIBCO Enterprise Message Service Administered Objects
	Configure WebSphere for the TIBCO Enterprise Message Service JNDI Provider
	Add TIBCO Enterprise Message Service as a JMS Provider to the Application Server
	Configure JNDI Bindings for TIBCO Enterprise Message Service Connection Factories for the Applica...
	Configure JNDI Bindings for TIBCO Enterprise Message Service Destinations for the Application Server
	Create new Listener Ports for TIBCO Enterprise Message Service
	Reassemble the Sample MDBs to Use the New TIBCO Enterprise Message Service Listener Ports
	Redefine the Resource Reference and Resource Environment Reference for the Point-to-Point Sample MDB
	Redefine the Resource Environment References in the Application Client Samples
	Add TIBCO Enterprise Message Service as a JMS Provider to the Application Client
	Configure the JNDI bindings for TIBCO Enterprise Message Service Connection Factories for the App...
	Update the Deployed Application on the Server
	Run the Samples Application Client

	Modify the Samples to Use SSL Communications
	Enable SSL in the TIBCO Enterprise Message Service Server
	Create JNDI Names for the SSL Queue and Topic Connection Factories
	Add the Additional SSL JNDI Properties to WebSphere
	Configure SSL Communications Between the Application Server and the TIBCO Enterprise Message Serv...
	Configure SSL Communications between the Point-to-Point Sample MDB and the TIBCO Enterprise Messa...
	Configure SSL Communications between the Application Client and the TIBCO Enterprise Message Serv...
	Update the Deployed Application on the Server
	Run the Samples Application Client

	Chapter�12 Integrating With Sun Java System Application Server 7
	Run the MDB Sample with Built-In JMS
	Run the MDB Sample with TIBCO EMS
	Configure Application Server
	Register JMS Resources with Application Server
	Run the Sample

	Run the MDB Sample with TIBCO EMS using SSL
	Configure the EMS Server
	Java Security Policy
	Configure Application Server

	Index

