TIBCO Enterprise Message
Service™

.NET Reference

System Release 4.3
February 2006

WiTIBCO

The Power of Now?®

Important Information

SOME TIBCO SOFTWARE EMBEDS OR BUNDLES OTHER TIBCO SOFTWARE. USE OF SUCH
EMBEDDED OR BUNDLED TIBCO SOFTWARE IS SOLELY TO ENABLE THE FUNCTIONALITY
(OR PROVIDE LIMITED ADD-ON FUNCTIONALITY) OF THE LICENSED TIBCO SOFTWARE.
THE EMBEDDED OR BUNDLED SOFTWARE IS NOT LICENSED TO BE USED OR ACCESSED BY
ANY OTHER TIBCO SOFTWARE OR FOR ANY OTHER PURPOSE.

USE OF TIBCO SOFTWARE AND THIS DOCUMENT IS SUBJECT TO THE TERMS AND
CONDITIONS OF A LICENSE AGREEMENT FOUND IN EITHER A SEPARATELY EXECUTED
SOFTWARE LICENSE AGREEMENT, OR, IF THERE IS NO SUCH SEPARATE AGREEMENT,
THE CLICKWRAP END USER LICENSE AGREEMENT WHICH IS DISPLAYED DURING
DOWNLOAD OR INSTALLATION OF THE SOFTWARE (AND WHICH IS DUPLICATED IN THE
TIBCO ENTERPRISE MESSAGE SERVICE USER’S GUIDE). USE OF THIS DOCUMENT IS
SUBJECT TO THOSE TERMS AND CONDITIONS, AND YOUR USE HEREOF SHALL
CONSTITUTE ACCEPTANCE OF AND AN AGREEMENT TO BE BOUND BY THE SAME.

This document contains confidential information that is subject to U.S. and international copyright
laws and treaties. No part of this document may be reproduced in any form without the written
authorization of TIBCO Software Inc.

TIB, TIBCO, Information Bus, The Power of Now, TIBCO Adapter, Rendezvous are either registered
trademarks or trademarks of TIBCO Software Inc. in the United States and/or other countries.

EJB, J2EE, JMS and all Java-based trademarks and logos are trademarks or registered trademarks of
Sun Microsystems, Inc. in the U.S. and other countries.

All other product and company names and marks mentioned in this document are the property of
their respective owners and are mentioned for identification purposes only.

This software may be available on multiple operating systems. However, not all operating system
platforms for a specific software version are released at the same time. Please see the readme.txt file
for the availability of this software version on a specific operating system platform.

THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS DOCUMENT COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE
CHANGES WILL BE INCORPORATED IN NEW EDITIONS OF THIS DOCUMENT. TIBCO
SOFTWARE INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S)
AND/OR THE PROGRAM(S) DESCRIBED IN THIS DOCUMENT AT ANY TIME.

Copyright © 1999-2006 TIBCO Software Inc. ALL RIGHTS RESERVED.
TIBCO Software Inc. Confidential Information

Contents
TaDI S o iX
PrefaCe . . Xi
Related DOCUMENTALIONottt e e e e e e e e Xii
TIBCO Enterprise Message Service Documentationttt Xii
Other TIBCO Product DOCUMENTAtIONottt e e e e e e e Xii
Third Party DOCUMENtatioN. e e e e Xii
How to Contact TIBCO CUSIOMEr SUPPOIT oottt et e e et e e e e e e Xiv
Chapter 1 IntroducCtion 1
OVBIVIBW . o ettt e e e e e e e e e 2
Excluded Features and ReStrCtONS e 3
Object Serialization. 3
Strings and Character ENCOAINGS oottt e e e 4
NET Compact Framework (CF) e e e e e e 5
Chapter 2 Programmer’s Checklist 7
INS Al . e 7
GO . .o 7
oMUl L e 7
RUN . L e 7
Chapter 3 MESSaAgES . o o v ittt ettt e 9
Parts of a MESSAgEo 10
BOAY Ty PES . . it e 11
HEAO TS . . oot 12
IO S . . 17
Setting Message Properties 17
EMS Properties . . . oo 17
JMS PrO IS . . o o ottt e 19
MESSAQE SEIECIOIS . . .\ it e e 20
Data TYpe CONVEISION oottt e et e 23
ST ST= Lo = 24
Message. ACKNOWIEAQE.o 27

TIBCO Enterprise Message Service .NET Reference

iv | Contents

Message.ClearBody. 28
Message.ClearProperties 29
MESSage.CloNe . .. o 30
Message.GetDeliveryModeName e 31
Message—Get Properties oot 32
Message. PropertyEXIStS 33
Message—Set Properties oo 34
MESSAgE. TOSIING ottt et e e e e e 35
By eSS S a0 . . o v i 36
BytesMessage—Read 37
BytesMessage. Rea0dBY eS. e e 39
ByteSMESSagE— It ot 40
BytesMessage. WHtEBYIESo e 42
ByteSMESSagE. RESEL. . . . o e 43
MaPMESSAGE . . . e e 44
MapMESSaAgE— Gt 46
MapMessage. [temEXIStS 47
MaPM eSS agE— St o e 48
MapMeESSagE. SEtBYIES o e 49
O L MBS SaAgE . . oottt 50
O ECIMESSAGE . . . v o ittt 51
S EAMMES S A oo it 52
StreamMessage—Read. 54
StreamMessage.ReadByles e 55
StreamMessage. RESet e 56
StreamMessage—Write e 57
StreamMessage. WriteBYteS. e 58
TEXIM S S A . . v v vttt e 59
TEXIM S SAGE . o o oo e 60
Chapter 4 Destination e e e 61
Destination OVEIVIEWo ottt et e et e e e e e 62
DS INALION 65
QUEBUE . oot e 66
QUEBUE . o e e 67
TemMPOraryQUEBUE . . . o oo e e e e 68
TemporaryQueue.Delete e 69
TEMPOIAIY TOPIC .« v vttt et ettt e e e e e e e e e 70
TemporaryTopiC.Delete e e 71
TOPIC o o 72
TOPIC .« oot 73

TIBCO Enterprise Message Service .NET Reference

Contents | v

Chapter 5 CONSUM BT . ..t e e e e e e e e e e 75
MESSAgEC ONSUMET . . . o ottt e e e e e 76
MessageConNSUMEr.CIOSE.ot et e e e e e e 78
MessageCoNSUMEr. RECEIVE. e 79
MessageConsumer.ReceiveNOWaIt.o 80
QUEBUEBRECBIVEL . .\ ittt e e e e e e e e e e 81
TOPICSUDSCIID Bl . . .o e 82
EMSMessageHandler e 83
EMSMESSagEEVENIAIGS e 84
EMSMeESSageEVeNtAIGS. . . . oot 85
IMESSAgE LIS ENEr e e 86
IMesSageLisStener.ONMESSAgE o vttt e e 87
Chapter 6 ProdUCEr e e e e e 89
MESSAGE P IOUUCET . . . ittt e 90
MeESSagEPIOdUCEL.CIOSE . . .ot e 93
MESSagEePIOdUCEr. SEN o e e 94
QUEUE S ENUT . .t e e e e e 96
QUEUESENUEL.SENA et e e 97
TOPICPUDII ST . e 99
TopicPublisher.Publish e 100
Chapter 7 ReQUESIOTt e e e e e 103
QUEUEREOUESION . . .ottt e e e e e e e 104
QUEUEREQUESTIONt e e e et e e e e 105
QUEUEREQUESIONCIOSEottt e e 106
QUEUEREQUESIONREQUEST oo 107
TOPICREUESIOLo e e 108
TOPICREUESIOL. . . ot e 109
TOPICREQUESTION. CIOSE.t 110
TOPICREQUESIONREQUEST . . . o ottt et e e 111
Chapter 8 CoNNECHION i e e e e 113
COMNECHION . . .ttt 114
CoNNECHON.CIOSE . . . o .ttt 117
COoNNECHON. CreateSESSION. . . . o it ettt e e e e e 118
CONNECHON. S ot 119
CONNECHON. SIOP . . . v ottt e e e e e 120
ConnectionMetaDatao 121
QUEUECONNECHION . . ottt e e e e e 122

TIBCO Enterprise Message Service .NET Reference

Vi | Contents

QueueConnection.CreateQUEUESESSION.\t e et 123
TOPICC ONNECHION . . .t e e 124
TopicConNection.Create TOPICSESSION . . . o ottt e e e e e e 125
EMSEXceptionHandIer e 126
EMSEXCEPHONEVENIAIGS .« . o oottt e et e 127
EMSEXCEPHONEVEN AIGS. . . ot ittt et e e e 128
IEXCEPHONLISIENEr . . . 129
IEXceptionListener.ONEXCEPLIONo 130
Chapter 9 Connection Factory e 131
CONNECLIONFACIONY oot e e e e e e e e e e e e e 132
COoNNECLIONFACIONY.ottt e e e e e e e e 134
ConnectionFactory.CreateCoNNECLION.ot e e e e 135
FactoryLoadBalanCeMetriC e e 136
QUEUECONNECHIONFACIONY o e e 137
QueueConnectionFactory.CreateQueueConNectionttt e e 138
TOPICCONNECHONFACIONYot e e e e e e 139
TopicConnectionFactory.CreateTopiCCONNECLIONttt 140
Chapter 10 SeSSIONttt e e 141
S 0N L o i 142
SESSION.CIOSE . . . oot 148
SeSSION.COMMIL. . . . ottt e e 149
SESSION. CrealEBIOWS Y 150
SesSIoN.CreateBYleSMESSA0E. . . . o . .ttt e 151
SeSSION.CreateCONSUMETottt et e et e e e et e e e e e e e 152
Session.CreateDurableSubscriber. 153
SeSSION. CreateEMapMESSAQE. . .« o ottt i e 155
Session.CreateObjeCtMESSaAgE ot i 156
SeSSION.CreatePrOdUCET o 157
SESSION. CreatEQUEUE ottt 158
SesSioN.CreateStreamMeSSAgE oottt e 159
Session.CreateTemporaryQUEUE. oottt it et e et e e e e e e e e e et 160
Session.CreateTeMPOraryTOPIC.« v v vt et et et e e e e e e e e e e e e e 161
SeSSION. Create TEXIMESSAQE - -« « « ottt e 162
SESSION.CreateTOPIC ot ittt et 163
SESSION. RECOVET . . . ot 164
Session.RoIIbaCcK 165
SESSION. RUN . . 166
SesSION.UNSUDSCIDEo 167
SESSIONMOUE . . o ottt e 168

TIBCO Enterprise Message Service .NET Reference

Contents

QUEUE S S SION &ttt e e e e e e e e e 170
TOPICSESSION .« . o ottt et e e e 171
Chapter 11 QUEUE BrOWS B . . . vttt ittt et e e e e e e e e e e e e 173
QUEBUE B OWS BT . .ttt e e e 174
QUEUEBIOWSEL CIOSE . . ottt 176
QUeUEBIrowser.GEtENUMETALONttt e e e e e e e e e 177
QUEUEBIOWSEI.MOVENEXL. . . . ot e e e 178
QUEBUEBIOWSEI RES e 179
Chapter 12 Name Server LOOKUD . .. oottt e e e e e 181
LOOKUPCONIEXE . . . ot e e e e e e e 182
LOOKUPCONIEXL . . . oot e e e e e e e e e 184
LookupContext. AddSettingsot 185
LOOKUPCONtEXE.LOOKUP. . . . ot e e e 186
LookupContext.RemoveSettingst 187
Chapter 13 UtIlIties e 189
DeliVeryMOde e 190
IEMSSerialziable 191
IEMSSerialziable.Deserialize e 192
IEMSSerialziable.Serialize 193
MessageDeliveryMOde e 194
T M o 195
Tibems.CalculateMesSageSizeottt 200
Tibems.CreateFrOmMBYIES. e 201
Tibems.GetAllowCloselnCallback. 202
TIDEMS. G ASBY S . . . o oottt e e 203
TIbems.GetCoNNECt AT MPES ot e e 204
TIbems.GetENCOAINGottt e 205
Tibems.GetEXCeptioNnONFTSWItCh o e e e 206
Tibems.GetMessageENCOdiNgottt 207
TIbemMS. GetMESSaAgESIZE ot e 208
Tibems.GetPingInterval e e 209
TIDEMS. GO PIOPEIY . . . oo e 210
Tibems.GetReCONNECIAREMPES o o e e 212
Tibems.GetSessionDispatcherDaemon e 213
Tibems.GetSocketReceiveBufferSize. 214
Tibems.GetSocketSendBuUfferSize 215
Tibems.MakeWriteable 216
Tibems.SetAllowCloselnCallback 217
Tibems. SetCoNNECtAREMPLS e e 218

TIBCO Enterprise Message Service .NET Reference

Vii

viii

Contents

TIbems.SetENCOAING oo 219

Tibems.SetExceptionONFTSWILCN e e 220

Tibems.SetMessageENCOdiNgo ot 221

Tibems.SetPingInterval e 222

TIDEMS. St PIOPEItY 223

Tibems.SetRecONNECtAtEMPLSo e 225

Tibems.SetSessionDispatcherDaemon e 226

Tibems.SetSocketReceiveBufferSize e 227

Tibems.SetSocketSendBufferSize. e 228
Chapter 14 EXCeption. e e 229
EMSEXCEPION . . .o 230
AUthentiCatioNEXCEPIION e 232
CannotProceedEXCePliON 233
CommuNiCatiONEXCEPtON e 234
ConfiguIratiONEXCEPLIONo 235
legalStateEXCEPLIONo e 236
INValidClieNtIDEXCEPLIONt e 237
InvalidDestinatioNEXCEPLON o e e 238
InvalidNameEXCePtiON e 239
INValidSeleCtOrEXCEPtON e e 240
MessageEOFEXCEPON 241
MessageFormMatEXCEPtION e e e 242
MessageNotReadableEXCEption 243
MessageNotWriteableEXCEPtON e e 244
NameNOtFOUNAEXCEPHON e e e e e 245
NaMINGEXCEPIION . . . oo e 246
ResourceAllocationEXCeplion 247
SECUNTYEXCEPIION . . . o e e 248
ServiceUnavailableEXCeption 249
TransactionINProgreSSEXCEPIONot 250
TransactionRolledBackEXCEPLON e 251
I X o 253

TIBCO Enterprise Message Service .NET Reference

ixX

Tables

Table 1 Feature SUPPOI . . . o e 3
Table 2 EMS Assembly DLLo e 7
Table 3 Message Header Namesottt e e e e e e 12
Table 4 Message Property Namesot e 17
Table 5 Data TYPe CONVEISION . . . o oottt e e e e e e e e e e 23
Table 6 BytesMessage Read Methods e 37
Table 7 BytesMessage Write Methods 40
Table 8 Destination OVEIVIEWttt e e e e e e e 62

TIBCO Enterprise Message Service .NET Reference

x | Tables

TIBCO Enterprise Message Service .NET Reference

Topics

Xi

Preface

TIBCO Enterprise Message Service™ software lets application programs send and
receive messages according to the Java Message Service (JMS) protocol. It also
integrates with TIBCO Rendezvous and TIBCO SmartSockets message products.

This software may be available on multiple operating systems. However, not
all operating system platforms for a specific software version are released at the
same time. Please see the readme.txt file for the availability of this software
version on a specific operating system platform.

e Related Documentation, page xii

* How to Contact TIBCO Customer Support, page xiv

TIBCO Enterprise Message Service .NET Reference

Xii | Related Documentation

Related Documentation

This section lists documentation resources you may find useful.

TIBCO Enterprise Message Service Documentation

The following documents form the TIBCO Enterprise Message Service
documentation set:

TIBCO Enterprise Message Service User’s Guide Read this manual to gain an
overall understanding of the product, its features, and configuration.

TIBCO Enterprise Message Service Installation Read the relevant sections of this
manual before installing this product.

TIBCO Enterprise Message Service Application Integration Guide This manual
presents detailed instructions for integrating TIBCO Enterprise Message
Service with third-party products.

TIBCO Enterprise Message Service C & COBOL API Reference This reference is
available in HTML and PDF formats.

TIBCO Enterprise Message Service Java API Reference This reference is available
as JavaDoc, and you can access the reference only through the HTML
documentation interface.

TIBCO Enterprise Message Service NET API Reference This reference is
available in PDF and HTML format.

TIBCO Enterprise Message Service Release Notes Release notes summarize new
features, changes in functionality, and closed issues. This document is
available only in PDF format.

Other TIBCO Product Documentation

You may find it useful to read the documentation for the following TIBCO
products:

TIBCO Rendezvous™ software

TIBCO SmartSockets™ software

Third Party Documentation

Java™ Message Service specification, available through
java.sun.com/products/jms/index.html

TIBCO Enterprise Message Service .NET Reference

Preface | xiii

® Java™ Message Service by Richard Monson-Haefel and David A. Chappell,
O’Reilly and Associates, Sebastopol, California, 2001.

TIBCO Enterprise Message Service .NET Reference

Xiv | How to Contact TIBCO Customer Support

How to Contact TIBCO Customer Support

For comments or problems with this manual or the software it addresses, please
contact TIBCO Support Services as follows.

¢ For an overview of TIBCO Support Services, and information about getting
started with TIBCO Product Support, visit this site:

http:/ /www.tibco.com/services/support/default.jsp
¢ Ifyou already have a valid maintenance or support contract, visit this site:
http:/ /support.tibco.com

Entry to this site requires a username and password. If you do not have a
username, you can request one.

TIBCO Enterprise Message Service .NET Reference

Chapter 1

Topics

1

Introduction

This chapter presents concepts specific to the TIBCO Enterprise Message
Service™ NET API and .NET Compact Framework API. For more general
information and concepts pertaining to TIBCO Enterprise Message Service (EMS)
software, see the book TIBCO Enterprise Message Service User’s Guide.

* Qverview, page 2
e Excluded Features and Restrictions, page 3

e Strings and Character Encodings, page 4

TIBCO Enterprise Message Service .NET Reference

2 |Chapter1 Introduction

Overview

TIBCO Enterprise Message Service .NET API implements (and extends) the JMS
1.1 specification. It is compatible with the JMS 1.0.2 specification.

This implementation consists of fully-managed .NET code.

TIBCO Enterprise Message Service .NET API closely mimics the Java APL This
parallelism eases porting of programs between the two programming languages.

The .NET API incorporates .NET-style event handling and enumerated constants
(to enable compiler type checking). These features encourage programmers to use
a .NET idiom, even while their Java-oriented versions remain available for quick
porting.

EMS .NET Compact Framework API brings the power of EMS to any hand-held
device or embedded system that supports .NET Compact Framework.

TIBCO Enterprise Message Service .NET Reference

Excluded Features and Restrictions | 3

Excluded Features and Restrictions

This section summarizes features that are not available in either the .NET library,
or the NET Compact Framework library.

Table 1 Feature Support
NET

Feature . Compact
Framework

XA protocols for external transaction managers — —

ConnectionConsumer, ServerSession, ServerSessionPool — —

Compression — —

SSL — —

Modify socket buffer sizes (see Yes —
Tibems.SetSocketReceiveBufferSize on page 227 and
Tibems.SetSocketSendBufferSize on page 228).

Daemon threads (see Tibems.SetSessionDispatcherDaemon Yes —
on page 226).

Object Serialization

The .NET library supports serialization for all objects. In contrast, the NET
Compact Framework library supports serialization for a restricted set of objects.
For details, see ObjectMessage on page 50.

Object serialization differs among the various EMS language APIs in ways that
are incompatible. An ObjectMessage contains a serialized object. Therefore EMS
programs can only send an ObjectMessage to another program written in the
same language; for example, Java to Java, C to C, NET to .NET, and .NET
Compact Framework to .NET Compact Framework. In particular, notice that a
NET Compact Framework client and a full .NET client cannot exchange an
ObjectMessage.

TIBCO Enterprise Message Service .NET Reference

4 |Chapter1 Introduction

Strings and Character Encodings

Outbound
Messages

Outbound
Messages

NET programs represent strings within messages as byte arrays. Before sending
an outbound message, EMS programs translate strings to their byte
representation using an encoding, which the program specifies. Conversely, when
EMS programs receive inbound messages, they reconstruct strings from byte
arrays using the same encoding.

When a program specifies an encoding, it applies to all strings in message bodies
(names and values), and properties (names and values). It does not apply to
header names nor values. The method BytesMessage.WriteUTF always uses
UTEF-8 as its encoding.

For a list of standard encoding names, see www.iana.org.

Programs can determine the encoding of strings in outbound messages in three
ways:

e Use the default global encoding—namely, UTF-8.

® Set a non-default global encoding (for all outbound messages) using
Tibems.SetEncoding on page 219.

® Set the encoding for an individual message using
Tibems.SetMessageEncoding on page 221.

An inbound message from another EMS client explicitly announces its encoding.
A receiving client decodes the message using the proper encoding.

TIBCO Enterprise Message Service .NET Reference

.NET Compact Framework (CF) | 5

.NET Compact Framework (CF)

Threads

Clock Resolution

Object
Serialization

Excluded
Features

DLL

This section presents recommendations for using the EMS .NET Compact
Framework API to develop applications for handheld devices.

NET Compact Framework does not support background threads. To avoid
problems with threads, we recommend that programs release all EMS resources
before terminating. For example, close EMS connections when they are no longer
needed (see Connection.Close on page 117).

Clock resolution affects the granularity of all time-related calls and parameters—
for example MessageConsumer .Receive (timeout), connect delays. On some
handheld devices, clock resolution is coarser than one might expect. Check the
resolution on your target device before selecting time values.

See Object Serialization on page 3.

See Excluded Features and Restrictions on page 3.

See Table 2 on page 7.

TIBCO Enterprise Message Service .NET Reference

6 | Chapter 1 Introduction

TIBCO Enterprise Message Service .NET Reference

Chapter 2

Install

Code

Compile

Run

7

Programmer’s Checklist

Developers of EMS programs can use this checklist during the four phases of the
development cycle.

¢ Install the EMS software release, which automatically includes the EMS
assembly DLLs in the clients\cs subdirectory.

* Import the correct EMS assembly (see Table 2).

Table 2 EMS Assembly DLL

Version DLL
Full NET API TIBCO.EMS.dll
.NET Compact Framework API TIBCO.EMS-CF.dll

¢ Compile with any .NET compiler.

* The EMS assembly must be in the global assembly cache (this location is
preferred), or in the system path, or in the same directory as your program
executable.

* The application must be able to connect to a EMS daemon process (tibemsd).

TIBCO Enterprise Message Service .NET Reference

8 | Chapter 2 Programmer’s Checklist

TIBCO Enterprise Message Service .NET Reference

Chapter 3 Messages

Message objects carry application data between client program processes. This
chapter presents the structure of messages, JMS message selector syntax to specify
a subset of messages based on their property values, the message classes and their
methods.

Topics

® Parts of a Message, page 10
* Body Types, page 11

® Headers, page 12

® Properties, page 17

® Message Selectors, page 20
® Message, page 24

* BytesMessage, page 36

* MapMessage, page 44

® ObjectMessage, page 50

e StreamMessage, page 52

e TextMessage, page 59

TIBCO Enterprise Message Service .NET Reference

10 |Chapter3 Messages

Parts of a Message

Messages consist of three parts:

¢ Body The body of a message bears the information content of an application.
Several types of message body organize that information in different ways;
see Body Types on page 11.

* Header Headers associate a fixed set of header field names with values.
Clients and providers use headers to identify and route messages.

* Properties Properties associate an extensible set of property names with
values. The EMS server uses properties to attach ancillary information to
messages. Client applications can also use properties—for example, to
customize message filtering.

TIBCO Enterprise Message Service .NET Reference

Body Types

Body Types | 11

EMS follows JMS in defining five types of message body:

* MapMessage The message body is a mapping from field names to values.
Field names are strings. EMS supports an extended set of values types
(extending JMS). Programs can access fields either by name, or sequentially
(though the order of that sequence is indeterminate).

® ObjectMessage The message body is one serializable object.

® StreamMessage The message body is a stream of values. Programs write the
values sequentially into the stream, and read values sequentially from the
stream.

® TextMessage The message body is one character string (of any length). This
text string can represent any text, including an XML document.

® BytesMessage The message body is a stream of uninterpreted bytes.
Programs can use this body type to emulate body types that do not map
naturally to one of the other body types.

TIBCO Enterprise Message Service .NET Reference

12 |Chapter3 Messages

Headers

Headers associate a fixed set of header field names with values. Clients and
providers use headers to identify and route messages.

Programs can access headers as .NET properties of the message object.
Table 3 Message Header Names (Sheet 1 of 5)

Header Description

JMS Headers

These .NET properties correspond to message headers defined in the JMS specification.
Programs can get all supported message header properties (see Message—Get Properties on
page 32).

Programs can effectively set only three message header properties—ReplyTo, CorrelationID and
MsgType (see Message—Set Properties on page 34). For all other header properties, the provider
ignores or overwrites values set by client programs.

CorrelationID string {get; set;}

Correlation ID refers to a related message. For example, when a
consumer responds to a request message by sending a reply, it can set
the correlation ID of the reply to indicate the request message.

The JMS specification allows three categories of values for the
correlation ID property:

* Message ID A message ID is a unique string that the provider
assigns to a message. Programs can use these IDs to correlate
messages. For example, a program can link a response to a request
by setting the correlation ID of a response message to the message
ID of the corresponding request message. (See also MessageID on
page 14.)

Message 1D strings begin with the prefix ID: (which is reserved for
this purpose).

® String Programs can also correlate messages using arbitrary strings,
with semantics determined by the application.

These strings must not begin with the prefix ID: (which is reserved
for message IDs).

* Byte Array This implementation does not support byte array values
for the correlation ID property. The JMS specification does not
require support.

TIBCO Enterprise Message Service .NET Reference

Headers | 13

Table 3 Message Header Names (Sheet 2 of 5)

Header Description

CorrelationIDAsBytes Dbyte[] {get; set;}

The JMS specification describes this optional utility, but EMS does not
support it. Attempting to access this header results in
System.InvalidOperationException.

DeliveryMode int {get; set;}

This header instructs the server concerning persistent storage for the
message.

Sending calls record the delivery mode for each message, based on
either a property of the producer (DeliveryMode on page 90), or on a
parameter to the sending call.

For values, see the class DeliveryMode on page 190.

MsgDeliveryMode MessageDeliveryMode {get; set;}

This parallel .NET property accesses the same header using enumerated
values (instead of ordinary integers). We recommend it over the
ordinary integer-valued accessor, because it enables .NET to do stronger
type checking at compile time, which can enhance program reliability.

For values, see the class MessageDeliveryMode on page 194.

Destination Destination {get; set;}

Sending calls record the destination (queue or topic) of the message in
this header (ignoring and overwriting any existing value). The value is
based on either a property of the producer (Destination on page 91), or
on a parameter to the send call.

Listeners that consume messages from several destinations can use this
property to determine the actual destination of a message.

TIBCO Enterprise Message Service .NET Reference

14 | Chapter 3 Messages

Table 3 Message Header Names (Sheet 3 of 5)

Header Description

Expiration long {get; set;}

Sending calls record the expiration time (in milliseconds) of the message
in this field:

e [f the time-to-live is non-zero, the expiration is the sum of that
time-to-live and the sending client’s current time (GMT).

¢ If the time-to-live is zero, then expiration is also zero—indicating

that the message never expires.

The server discards a message when its expiration time has passed.
However, the JMS specification does not guarantee that clients do not
receive expired messages.

See TimeToLive on page 92.

MessageID string {get; set;}

Sending calls assign a unique ID to each message, and record it in this
header.

All message ID values start with the 3-character prefix ID: (which is
reserved for this purpose).

Applications that do not require message IDs can reduce overhead costs
by disabling IDs; see DisableMessageID on page 91. When the
producer disables IDs, the value of this header is null.

MsgType string {get; set;}

Some JMS providers use a message repository to store message type
definitions. Client programs can store a value in this field to reference a
definition in the repository. EMS supports this header, but does not use
it.

The JMS specification does not define a standard message definition
repository, nor does it define a naming policy for message type
definitions.

Some providers require message type definitions for each application
message. To ensure compatibility with such providers, client programs
can set this header, even if the client application does not use it.

To ensure portability, clients can set this header with symbolic values
(rather than literals), and configure them to match the provider’s
repository.

TIBCO Enterprise Message Service .NET Reference

Headers | 15

Table 3 Message Header Names (Sheet 4 of 5)

Header Description

Priority int {get; set;}

Sending calls record the priority of a message in this header, based on
either a property of the producer (Priority on page 91), or on a
parameter to the send call.

The JMS specification defines ten levels of priority value, from zero
(lowest priority) to 9 (highest priority). The specification suggests that
clients consider 0—4 as gradations of normal priority, and priorities 5-9
as gradations of expedited priority.

Priority affects the order in which the server delivers messages to
consumers (higher values first). The JMS specification does not require
all providers to implement priority ordering of messages. (EMS
supports priorities, but other J]MS providers might not.)

Redelivered bool {get; set;}

The server sets this header to indicate whether a message might
duplicate a previously delivered message:

e false—The server has not previously attempted to deliver this
message to the consumer.

¢ true—ltislikely (but not guaranteed) that the server has previously
attempted to deliver this message to the consumer, but the consumer
did not return timely acknowledgement.

See also, SessionMode on page 168.

ReplyTo Destination {get; set;}

Sending clients can set this header to request that recipients reply to the
message:

e When the value is a destination object, recipients can send replies to
that destination. Such a message is called a request.

e When the value is null, the sender does not expect a reply.

When sending a reply, clients can refer to the corresponding request by
setting the CorrelationID field.

TIBCO Enterprise Message Service .NET Reference

16 |Chapter3 Messages

Table 3 Message Header Names (Sheet 5 of 5)

Header Description

Timestamp long {get; set;}
Sending calls record a UTC timestamp in this header, indicating the
approximate time that the server accepted the message.
The value is in milliseconds since January 1, 1970 (as in Java).

Applications that do not require timestamps can reduce overhead costs
by disabling timestamps; see DisableMessageTimestamp on page 91.
When the producer disables timestamps, the value of this header is zero.

TIBCO Enterprise Message Service .NET Reference

Properties

Properties

Properties associate an extensible set of property field names with values. The
EMS server uses properties to attach ancillary information to messages.

Client applications can also use properties—for example, to customize message
filtering; see Message Selectors on page 20.

Setting Message Properties

EMS Properties

Property names must conform to the syntax for message selector identifiers; see
Identifiers on page 20.

Property values must not be null, nor the empty string.
Sending programs can set property values before sending a message.

Receiving programs cannot ordinarily set property values on inbound messages.
However, the clearProperties method removes all existing the properties from
a message, and lets the program set property values.

The JMS specification reserves the property name prefix JMS_vendor_name_ for
provider-specific properties (for EMS, this prefix is JMS_TIBCO_). Properties that
begin with this prefix refer to features of EMS; client programs may use these
properties to access those features, but not for communicating application-specific
information among client programs.

Table 4 Message Property Names (Sheet 1 of 2)

Property Description

JMS_TIBCO_CM_PUBLISHER Correspondent name of an RVCM sender for messages

imported from TIBCO Rendezvous.

JMS_TIBCO_CM_SEQUENCE Sequence number of an RVCM message imported from
TIBCO Rendezvous.
JMS_TIBCO_COMPRESS Senders may set this property to request that EMS

compress the message before sending it to the server. The
.NET client API does not support this feature at this time.

TIBCO Enterprise Message Service .NET Reference

17

18 |Chapter3 Messages

Table 4 Message Property Names (Sheet 2 of 2)

Property Description

JMS_TIBCO_DISABLE_SENDER Senders may set this property to prevent the EMS server
from including the sender name in the message when the
server sends it to consumers; see JMS_TIBCO_SENDER.

JMS_TIBCO_IMPORTED When the EMS server imports a message from an
external message service (such as TIBCO Rendezvous or
TIBCO SmartSockets), it sets this property to true.

JMS_TIBCO_MSG_EXT Producers can set this property to true to indicate that a
message uses EMS extensions to the JMS specification for
messages.

The server sets this property to true when importing a
message from an external message service, since the
message might use those extensions.

JMS_TIBCO_MSG_TRACE When a producer sets this property, the EMS server
generates trace output when the message arrives from
the producer, and whenever a consumer receives it.

¢ When the property value is null, the trace output
contains the message ID and sequence number.

¢ When the property value is body, the trace output
includes the message body as well.

JMS_TIBCO_PRESERVE_UNDELIVERED When this property is true, the server preserves a record
of undeliverable messages by delivering them to the
undelivered message queue, $sys.undelivered.

JMS_TIBCO_SENDER The EMS server fills this property with the user name
(string) of the client that sent the message. This feature
applies only when the sender_name property of the
message’s destination is non-null. The sender can disable
this feature (overriding the destination property
sender_name) by setting a non-null value for the
message property JMS_TIBCO_DISABLE_SENDER.

JMS_TIBCO_SS_SENDER When the EMS server imports a message from TIBCO
SmartSockets, it sets this property to the SmartSockets
sender header field (in SmartSockets syntax).

TIBCO Enterprise Message Service .NET Reference

Properties | 19

JMS Properties

The JMS specification reserves the property name prefix JMSX for properties
defined by JMS. Client programs may use these properties to access those
features, but not for communicating application-specific information among
client programs.

To determine the set of JMS properties that a connection supports, call the method
JMSXPropertyNames on page 121. For information about these properties, see the
JMS specification.

TIBCO Enterprise Message Service .NET Reference

20 |Chapter3 Messages

Message Selectors

Identifiers

Basic Syntax

lllegal

Value

Literals

String Literal

Exact Numeric
Literal

Approximate
Numeric Literal

Boolean Literal

A message selector is string that lets a client program specify a set of messages,
based on the values of message headers and properties. A selector matches a
message if, after substituting header and property values from the message into
the selector string, the string evaluates to true. Consumers can request that the
server deliver only those messages that match a selector.

The syntax of selectors is based on a subset of SQL92 conditional expression
syntax.

Identifiers can refer to the values of message headers and properties, but not to
the message body. Identifiers are case-sensitive.

An identifier is a sequence of letters and digits, of any length, that begins with a
letter. As in Java, the set of letters includes _ (underscore) and $ (dollar).

Certain names are exceptions, which cannot be used as identifiers. In particular,
NULL, TRUE, FALSE, NOT, AND, OR, BETWEEN, LIKE, IN, IS, and ESCAPE are defined to
have special meaning in message selector syntax.

Identifiers refer either to message header names or property names. The type of
an identifier in a message selector corresponds to the type of the header or
property value. If an identifier refers to a header or property that does not exist in
a message, its value is NULL.

A string literal is enclosed in single quotes. To represent a single quote within a
literal, use two single quotes; for example, '1iteral’'s'. String literals use the
Unicode character encoding. String literals are case sensitive.

An exact numeric literal is a numeric value without a decimal point, such as 57,
-957, and +62; numbers in the range of long are supported.

An approximate numeric literal is a numeric value with a decimal point (such as
7.,-95.7,and +6.2), or a numeric value in scientific notation (such as 7E3 and
-57.9E2); numbers in the range of double are supported. Approximate literals
use the floating-point literal syntax of the Java programming language.

The boolean literals are TRUE and FALSE (case insensitive).

TIBCO Enterprise Message Service .NET Reference

Expressions
Selectors as
Expressions

Arithmetic

Expression

Conditional
Expression

Order of
Evaluation

Operators
Case Insensitivity
Logical Operators

Comparison
Operators

Arithmetic
Operators

Message Selectors

Internal computations of expression values use a 3-value boolean logic similar to
SQL. However, the final value of an expression is always either TRUE or FALSE—
never UNKNOWN.

Every selector is a conditional expression. A selector that evaluates to true
matches the message; a selector that evaluates to false or unknown does not
match.

Arithmetic expressions are composed of numeric literals, identifiers (that evaluate
to numeric literals), arithmetic operations, and smaller arithmetic expressions.

Conditional expressions are composed of comparison operations, logical
operations, and smaller conditional expressions.

Order of evaluation is left-to-right, within precedence levels. Parentheses override
this order.

Operator names are case-insensitive.
Logical operators in precedence order: NOT, AND, OR.

Comparison operators: =, >, >=, <, <=, <> (not equal).

These operators can compare only values of comparable types. (Exact numeric
values and approximate numerical values are comparable types.) Attempting to
compare incomparable types yields false. If either value in a comparison
evaluates to NULL, then the result is unknown (in SQL 3-valued logic).

Comparison of string values is restricted to = and <>. Two strings are equal if and
only if they contain the same sequence of characters.

Comparison of boolean values is restricted to = and <>.

Arithmetic operators in precedence order:
* + - (unary)

e =,/ (multiplication and division)

* +, - (addition and subtraction)

Arithmetic operations obey numeric promotion rules of the Java programming
language.

TIBCO Enterprise Message Service .NET Reference

21

22 | Chapter 3 Messages

Between
Operator

String
Set Membership

Pattern Matching

Null Header or
Property

White Space

arithmetic-exprl [NOT] BETWEEN arithmetic-expr2 AND arithmetic-expr3
The BETWEEN comparison operator includes its endpoints. For example:
® age BETWEEN 5 AND 9 isequivalentto age >= 5 AND age <= 9

® age NOT BETWEEN 5 AND 9 isequivalentto age < 5 OR age > 9

identifier [NOT] IN (string-literall, string-literal2, ...)

The identifier must evaluate to either a string or NULL. If it is NULL, then the value of

this expression is unknown.

identifier [NOT] LIKE pattern-value [ESCAPE escape-character]

The identifier must evaluate to a string.

The pattern-value is a string literal, in which some characters bear special meaning:

* _ (underscore) can match any single character.

* % (percent) can match any sequence of zero or more characters.

® escape-character preceding either of the special characters changes them into
ordinary characters (which match only themselves).

identifier IS NULL

This comparison operator tests whether a message header is null, or a message
property is absent.

identifier IS NOT NULL

This comparison operator tests whether a message header or message property is
non-null.

White space is any of the characters space, horizontal tab, form feed, or line
terminator—or any contiguous run of characters in this set.

TIBCO Enterprise Message Service .NET Reference

Data Type Conversion | 23

Data Type Conversion

Table 5 summarizes legal datatype conversions. The symbol X in Table 5 indicates
that a value written into a message as the row type can be extracted as the column
type. This table applies to all message values—including map pairs, headers and
properties—except as noted below.

Table 5 Data Type Conversion

bool byte short char int long float double string bytel[l

bool X X
byte X X X X X
short X X X X
char X X
int X X X
long X X
float X X X
double X X
string X X X X X X X X
bytel[] X

Notes e Message properties cannot have byte array values.

® Values written as strings can be extracted as a numeric or boolean type only
when it is possible to parse the string as a number of that type.

TIBCO Enterprise Message Service .NET Reference

24 | Chapter 3 Messages

Message

Class
Declaration public class Message : ICloneable
Subclasses BytesMessage, MapMessage, ObjectMessage, StreamMessage, TextMessage
Purpose Messages carry information among EMS client programs.

Remarks All other message types extend this root class.

Method Description Page
Message.Acknowledge Acknowledge messages. 27
Message.ClearBody Clear the body of a message. 28
Message.ClearProperties Clear the properties of a message. 29
Message.Clone Create a copy of the message object. 30
Message.GetDeliveryModeName Convert a delivery mode constant to a string. 31
Message—Get Properties Get the value of a message property. 32
Message.PropertyExists Test whether a named property has been set 33

on a message.

Message—Set Properties Set the value of a message property. 34
Message.ToString Return a string representation of a message 35
object.

TIBCO Enterprise Message Service .NET Reference

Message | 25

Field Description
Constants defined as .NET fields.

DEFAULT_ DELIVERY_MODE int DeliveryMode.PERSISTENT

When neither the sending call nor the producer supplies a
delivery mode, this default applies.

DEFAULT MSG_DELIVERY_ MODE MessageDeliveryMode MessageDeliveryMode.Persistent

Enumerated version of the same value.

DEFAULT_PRIORITY int 4

When neither the sending call nor the producer supplies a
priority, this default applies.

See also Priority on page 15.

DEFAULT_TIME_TO_LIVE long O

When neither the sending call nor the producer supplies a
priority, this default applies. The default value, zero, indicates
that messages do not expire.

See also Expiration on page 14.

JMS Headers as This table lists the JMS headers that are available as .NET properties of message
.NET Properties objects. For details, see Headers on page 12.

(Sheet 1 of 2)

CorrelationID

CorrelationIDAsBytes

DeliveryMode

MsgDeliveryMode

Destination

Expiration

TIBCO Enterprise Message Service .NET Reference

26 | Chapter 3 Messages

(Sheet 2 of 2)

Header

MessagelD

MsgType

Priority

Redelivered

ReplyTo

Timestamp

TIBCO Enterprise Message Service .NET Reference

Message.Acknowledge | 27

Message.Acknowledge
Method

Declaration virtual void Acknowledge();
Purpose Acknowledge messages.

Remarks The behavior of this call depends on the acknowledgement mode of the Session.

* IncClientAcknowledge mode, this call acknowledges all messages that the
program has consumed within the session. (This behavior complies with the
JMS specification.)

® InExplicitClientAcknowledge mode, this call acknowledges only the
individual message. (This mode and behavior are proprietary extensions,
specific to TIBCO EMS.)

® InExplicitClientDupsOkAcknowledge mode, this call lazily acknowledges
only the individual message. Lazy means that the provider client library can
delay transferring the acknowledgement to the server until a convenient time;
meanwhile the server might redeliver the message. (This mode and behavior
are proprietary extensions, specific to TIBCO EMS.)

¢ In all other modes, this call has no effect. In particular, modes that specify
transactions or implicit acknowledgement do not require the consuming
program to call this method. However, calling it does not produce an
exception. (This behavior complies with the JMS specification.)

Consumed Three events mark a message as consumed—that is, eligible for acknowledgment
using this method:

* Just before the provider raises an EMSMessageHandler event, it marks the
message argument as consumed.

* Just before the provider calls an IMessageListener.OnMessage callback, it
marks the message argument as consumed.

* Just before a receive call returns a message, it marks that message as
consumed.

Redelivery The server might redeliver unacknowledged messages.

See Also MessageConsumer.Receive on page 79
Session on page 142
AcknowledgeMode on page 143
SessionAcknowledgeMode on page 143
SessionMode on page 168

TIBCO Enterprise Message Service .NET Reference

28 |Chapter3 Messages

Message.ClearBody

Method
Declaration virtual void ClearBody();
Purpose Clear the body of a message.

Remarks Clearing the body of a message leaves its header and property values unchanged.

If the message body was read-only, this method makes it writeable. The message
body appears and behaves identically to an empty body in a newly created
message.

TIBCO Enterprise Message Service .NET Reference

Message.ClearProperties | 29

Message.ClearProperties
Method

Declaration virtual void ClearProperties();
Purpose Clear the properties of a message.

Remarks Clearing the property values of a message leaves its header values and body
unchanged.

TIBCO Enterprise Message Service .NET Reference

30 |Chapter3 Messages

Message.Clone

Method
Declaration virtual Object Clone();
Implements ICloneable.Clone

Purpose Create a copy of the message object.

TIBCO Enterprise Message Service .NET Reference

Message.GetDeliveryModeName | 31

Message.GetDeliveryModeName

Method

Declaration

Purpose

Parameters

Remarks

See Also

static string GetDeliveryModeName (
MessageDeliveryMode deliveryMode);

static string GetDeliveryModeName
(int deliveryMode);

Convert a delivery mode constant to a string.

Parameter Description

deliveryMode Convert this delivery mode to a string.

Programs can obtain the delivery mode of a message by accessing the
DeliveryMode header property of the message object.

This method is an extension to the JMS specification.

DeliveryMode on page 190
MessageDeliveryMode on page 194

TIBCO Enterprise Message Service .NET Reference

32 |Chapter3 Messages

Message—Get Properties

Method

Declaration

Purpose

Parameters

Remarks

See Also

bool GetBooleanProperty(string name);
byte GetByteProperty(string name);
short GetShortProperty(string name);
int GetIntProperty(string name);

long GetLongProperty(string name);
float GetFloatProperty(string name);
double GetDoubleProperty(string name);
string GetStringProperty(string name);
Object GetObjectProperty(string name);

Get the value of a message property.

Parameter Description

name Get the property with this name.

Property names must obey the JMS rules for a message selector
identifier (see Message Selectors on page 20). Property names
must not be null, and must not be empty strings.

The JMS specification defines eight methods to get properties with different value
types—converting between compatible types. It also defines a ninth method to
get values of the eight primitive types as if they were objects. All nine of these
methods convert property values to the corresponding type (if possible).

When the message does not have a property set for the name, these rules apply:
® GetStringProperty and GetObjectProperty return null.
® GetBooleanProperty returns false.

e Numeric methods throw EMSException.

Message—Set Properties on page 34

TIBCO Enterprise Message Service .NET Reference

Message.PropertyExists | 33

Message.PropertyExists
Method

Declaration virtual bool PropertyExists(
string name);

Purpose Test whether a named property has been set on a message.

Parameters Parameter Description

name Test whether the message has a property with this name.

Remarks This call returns true if the property has a value on the message; otherwise it
returns false.

TIBCO Enterprise Message Service .NET Reference

34 | Chapter 3 Messages

Message—Set Properties
Method

Declaration void SetBooleanProperty(string name, bool val);
void SetByteProperty(string name, byte val);
void SetShortProperty(string name, short val);
void SetIntProperty(string name, int val);
void SetLongProperty(string name, long val);
void SetFloatProperty(string name, float val);
void SetDoubleProperty(string name, double val);
void SetStringProperty(string name, string val);
void SetObjectProperty(string name, Object val);

Purpose Set the value of a message property.

Parameters Parameter Description

name Set a property with this name.

Property names must obey the JMS rules for a message selector
identifier (see Message Selectors on page 20). Property names
must not be null, and must not be empty strings.

val Set the property to this value.

Remarks The JMS specification defines eight methods to set properties with different
primitive value types. It also defines a ninth method to set a property to an object
representation of any of the eight primitive types.

See Also Message—Get Properties on page 32

TIBCO Enterprise Message Service .NET Reference

Message.ToString | 35

Message.ToString
Method

Declaration override string ToString();
Purpose Return a string representation of a message object.

Remarks The string includes the body type, headers (name-value pairs), properties
(name-value pairs), and body content.

TIBCO Enterprise Message Service .NET Reference

36 |Chapter3 Messages

BytesMessage
Class

Declaration class BytesMessage : Message
Purpose A message containing a stream of uninterpreted bytes.

Remarks ~ Messages with this body type contain a single value, which is a byte stream.

Method Description Page

BytesMessage—Read Read primitive datatypes from the byte stream in the 37
message body.

BytesMessage.ReadBytes Read bytes to a byte array from the byte stream in the =~ 39
message body.

BytesMessage—Write Write primitive datatypes to the byte stream in the 40
message body.

BytesMessage.WriteBytes Write bytes from a byte array to the byte stream in the = 42
message body.

BytesMessage.Reset Set the read position to the beginning of the byte 43
stream, and mark the message body as read-only.

Member Description
Properties
BodyLength long {get;}

Programs can get the length of the message body (in bytes). Programs
cannot set this .NET property.

Superclasses = Message on page 24

TIBCO Enterprise Message Service .NET Reference

BytesMessage—Read | 37

BytesMessage—Read
Method

Declaration bool ReadBoolean();
sbyte ReadByte();
byte ReadUnsignedByte();
short ReadShort();
ushort ReadUnsignedShort();
char ReadChar();
int ReadInt();
long ReadLong();
float ReadFloat();
double ReadDouble();
String ReadUTF();

Purpose Read primitive datatypes from the byte stream in the message body.

Remarks The JMS specification defines these eleven methods to extract data from the byte
stream of a BytesMessage.

Each call reads a unit of data from the stream, and advances the read position so
that the next read call gets the next datum.

Parameter Description

value The method reads a datum from the message, and stores it in
this location.

length ReadUTF reads a UTF-8 string. Since the length of the string
cannot be determined in advance, the method stores the actual
length of the string in this location.

Table 6 BytesMessage Read Methods (Sheet 1 of 2)

Method # Bytes Interpret As
ReadBoolean 1 bool
ReadByte 1 sbyte
ReadUnsignedByte 1 byte
ReadShort 2 short
ReadUnsignedShort 2 ushort
ReadChar 2 char

TIBCO Enterprise Message Service .NET Reference

38 | Chapter 3 Messages

Table 6 BytesMessage Read Methods (Sheet 2 of 2)

Method # Bytes Interpret As
ReadInt 4 int
ReadLong 8 long
ReadFloat 4 float
ReadDouble 8 double
ReadUTF varies String

Encoded as UTF-8

See Also BytesMessage.ReadBytes on page 39

TIBCO Enterprise Message Service .NET Reference

BytesMessage.ReadBytes | 39

BytesMessage.ReadBytes

Method

Declaration

Purpose

Parameters

Remarks

Returns

int ReadBytes(byte[] value);

int ReadBytes(byte[] value, int length);
Read bytes to a byte array from the byte stream in the message body.

Parameter Description

value The program supplies a byte array. The call fills it with bytes
from the byte stream.

length Read (at most) this number of bytes from the stream.

When present, the 1ength argument must be between zero and
value.length (inclusive); otherwise the call throws a
System.IndexOutOfRangeException (and does not read any
bytes).

Each call reads bytes from the stream into the byte array, and advances the read
position.

When the program supplies a 1length argument, the call attempts to read length
bytes; otherwise it attempts to read value.length bytes.

This call returns the actual number of bytes read. When the call cannot read even
one byte, it returns -1.

TIBCO Enterprise Message Service .NET Reference

40 |Chapter3 Messages

BytesMessage—Write

Method

Declaration

Purpose

Remarks

void WriteBoolean(bool value);
void WriteByte(byte value);
void WriteShort(short value);
void WriteChar(char value);
void WriteInt(int value);

void WriteLong(long value);
void WriteFloat(float value);
void WriteDouble(double value);
void WriteUTF(string value);
void WriteObject(Object value);

Write primitive datatypes to the byte stream in the message body.

Parameter Description

value Write this value to the message.

The JMS specification defines these ten methods to insert data into the byte
stream of a BytesMessage.

Each call writes a data value to the stream, and advances the write position so that
the next write call appends to the new end of the stream.

Table 7 BytesMessage Write Methods (Sheet 1 of 2)

Method # Bytes Notes
WriteBoolean 1

WriteByte 1

WriteShort 2

WriteChar 2

WriteInt 4

WriteLong 8

WriteFloat 4

WriteDouble 8

WriteUTF varies Encoded as UTF-8

TIBCO Enterprise Message Service .NET Reference

See Also

BytesMessage—Write | 41

Table 7 BytesMessage Write Methods (Sheet 2 of 2)
Method # Bytes Notes

Converts an object to a primitive value (if
possible), and writes that value to the byte
stream.

WriteObject varies

BytesMessage.WriteBytes on page 42

TIBCO Enterprise Message Service .NET Reference

42 |Chapter3 Messages

BytesMessage.WriteBytes

Method

Declaration

Purpose

Parameters

Remarks

Offset & Length

void WriteBytes(byte[] value);

void WriteBytes(byte[] value, int offset, int length);

Write bytes from a byte array to the byte stream in the message body.

Parameter Description

value Write bytes from this byte array to the message.
offset Begin with the byte at this offset within the byte array.
length Write this number of bytes from the byte array.

Each call writes bytes from the byte array into the stream, and advances the write
position.

When the program supplies offset and length arguments, the call attempts to
write the specified bytes to the stream; otherwise it attempts to write the entire
byte array.

When present, the offset and length arguments must conform to these
restrictions:

® offset must be in the range [0, value.length-1]

* lengthmustbein the range [0, value.length]

® offset+length must be in the range [0, value.length]

That is, these two arguments must specify a span of bytes within the value

argument. Otherwise the call throws a System.IndexOutOfRangeException
(and does not write any bytes).

TIBCO Enterprise Message Service .NET Reference

BytesMessage.Reset | 43

BytesMessage.Reset
Method

Declaration void Reset();

Purpose Set the read position to the beginning of the byte stream, and mark the message
body as read-only.

Remarks Reset prepares a message body for reading, as if the message were newly

received. Contrast Message . ClearBody on page 28, which clears a message body
in preparation for writing, as if it were newly created.

TIBCO Enterprise Message Service .NET Reference

44 | Chapter 3 Messages

MapMessage
Class

Declaration class MapMessage : Message
Purpose A message containing a set of name-value pairs.

Remarks ~ Messages with this body type contain several values, indexed by name.

Method Description Page
MapMessage—Get Get primitive datatypes from a map message. 46
MapMessage.ItemExists Test that a named pair is set. 47
MapMessage—Set Set a name-value pair in a map message. 48
MapMessage.SetBytes Set a name-value pair to a byte array value. 49

Member Description

Properties

FieldCount int {get;}
Programs can get the number of data items in the message body.
Programs cannot set this .NET property.

MapNames System.Collections.IEnumerator {get;}

Programs can get an enumerator that produces the names of all the data
items in the message body.

Superclasses = Message on page 24

Extensions ~ TIBCO Enterprise Message Service extends the JMS MapMessage and
StreamMessage body types in two ways. These extensions allow TIBCO
Enterprise Message Service to exchange messages with TIBCO Rendezvous and
TIBCO SmartSockets programs, which have certain features not available within
the JMS specification.

TIBCO Enterprise Message Service .NET Reference

MapMessage | 45

* You can insert another MapMessage Or StreamMessage instance as a
submessage into a MapMessage Or StreamMessage, generating a series of
nested messages, instead of a flat message.

* You can use arrays as well as primitive types for the values.
These extensions add considerable flexibility to the two body types. However,
they are extensions and therefore not compliant with JMS specifications.

Extended messages are tagged as extensions with the vendor property tag
JMS_TIBCO_MSG_EXT.

For more information on message compatibility with Rendezvous messages, see
Message Body on page 87 in TIBCO Enterprise Message Service Release Notes.

TIBCO Enterprise Message Service .NET Reference

46 |Chapter3 Messages

MapMessage—Get
Method

Declaration bool GetBoolean(string name);
byte GetByte(string name);
short GetShort(string name);
char GetChar(string name);
int GetInt(string name);
long GetLong(string name);
float GetFloat(string name);
double GetDouble(string name);
string GetString(string name);
byte[] GetBytes(string name);
Object GetObject(string name);

Purpose Get primitive datatypes from a map message.

Parameters Parameter Description

name Get the value associated with this name.

Remarks The JMS specification defines eleven methods to extract data from the name-value
pairs of a MapMessage. Ten of these methods extract primitive data values. The
GetObject method gets these values as if they were objects.

Returns Each call finds the named pair (if it exists) and returns its value.

When the message does not have a field set for the name, these calls return null.

TIBCO Enterprise Message Service .NET Reference

MapMessage.ltemExists | 47

MapMessage.ltemExists
Method

Declaration bool ItemExists(string name);

Purpose Test that a named pair is set.

Parameters Parameter Description

name Test for a pair with this name.

TIBCO Enterprise Message Service .NET Reference

48 |Chapter3 Messages

MapMessage—Set

Method

Declaration void SetBoolean(string name, bool value);
void SetByte(string name, byte value);
void SetShort(string name, short value);
void SetChar(string name, char value);
void SetInt(string name, int value);
void SetLong(string name, long value);
void SetFloat(string name, float value);
void SetDouble(string name, double value);
void SetString(string name, String value);
void SetObject(string name, Object value);

Purpose Set a name-value pair in a map message.

Parameters Parameter Description

name Set the pair with this name.

Field names must not be null, and must not be empty strings.

value Associate this value with the name.

Remarks The JMS specification defines eleven methods to set name-value pairs in a
MapMessage (these ten, plus MapMessage . SetBytes on page 49).

The first nine of these methods set pairs with primitive value types. The
SetObject method first converts an object to a primitive type (if possible), and

then places that value in the pair.

See Also MapMessage.SetBytes on page 49

TIBCO Enterprise Message Service .NET Reference

MapMessage.SetBytes | 49

MapMessage.SetBytes

Method

Declaration

Purpose

Parameters

Remarks

See Also

void SetBytes(string name, byte[] value);

void SetBytes(string name, byte[] value, int offset, int length);

Set a name-value pair to a byte array value.

Parameter Description

name Set the pair with this name.

value Associate bytes from this byte array as the value of the name.
offset Begin with the byte at this offset within the byte array.
length Write this number of bytes from the byte array.

When the program supplies offset and length arguments, the call extracts the
specified bytes and uses them as the value; otherwise it uses the entire byte array.

When present, the offset and length arguments must be between zero and
value.length (inclusive), and their sum must also fall within the same range.
That is, these two arguments must specify a span of bytes within the value
argument. Otherwise the call throws an System. IndexOutOfRangeException
(and does not set any value).

MapMessage—Set on page 48

TIBCO Enterprise Message Service .NET Reference

50 |Chapter3 Messages

ObjectMessage
Class
Declaration class ObjectMessage : Message
Purpose A message containing a serializable object.
Remarks Setting the content of a MessageObject stores a snapshot of the object.

subsequent changes to the original object do not affect the message.

Member Description
Properties
TheObject Object {get; set;}
Programs can get and set the object in an ObjectMessage.
Method Description Page
ObjectMessage Constructor. 51
NET Object serialization differs among the various EMS language APIs in ways that
Compact are incompatible. An ObjectMessage contains a serialized object. Therefore EMS
Framework programs can only send an ObjectMessage to another program written in the

Superclasses

same language; for example, Java to Java, C to C, NET to .NET, and .NET
Compact Framework to .NET Compact Framework. In particular, notice that a
NET Compact Framework client and a full .NET client cannot exchange an
ObjectMessage.

Furthermore, the NET Compact Framework supports only a limited set of objects
for TheObject in an ObjectMessage—namely, bool, int, long, short, double,
float, byte, bytes, char, string, short[], int[], long[], float[], double[],
MapMessage, StreamMessage, and program-defined classes that implement
IEMSSerialziable. Attempting to set the value to an unsupported object type
results in MessageFormatException. This restriction applies only to .NET
Compact Framework (the full NET EMS API is exempt).

Message on page 24
IEMSSerialziable on page 191
MessageFormatException on page 242

TIBCO Enterprise Message Service .NET Reference

ObjectMessage | 51

ObjectMessage
Constructor
Declaration public ObjectMessage(

Purpose

Parameters

See Also

Session session,
object obj);

public ObjectMessage(
Session session);

Create an object message.

Parameter Description

session Associate the new message with this session.

obj Use this object as the value of the new message.

When absent, construct an empty object message.

NET Compact Framework on page 50
Session.CreateObjectMessage on page 156

TIBCO Enterprise Message Service .NET Reference

52 |Chapter3 Messages

StreamMessage
Class

Declaration class StreamMessage : Message
Purpose A message containing a stream of data items.

Remarks Each datum in the stream must be a primitive type, or an object representation of
a primitive type.

Member Description Page
StreamMessage—Read Read primitive datatypes from a stream message. 54
BytesMessage.ReadBytes Read a byte array from a stream message. 55
StreamMessage.Reset Set the read position to the beginning of the stream, 56

and mark the message body as read-only.

StreamMessage—Write Write primitive datatypes to a stream message. 57

BytesMessage.WriteBytes Write bytes from a byte array to a stream message. 58

Member Description
Properties
FieldCount int {get;}

Programs can get the number of data items in the message body.
Programs cannot set this property.

Superclasses = Message on page 24

Extensions TIBCO Enterprise Message Service extends the MapMessage and StreamMessage
body types in two ways. These extensions allow TIBCO Enterprise Message
Service to exchange messages with TIBCO Rendezvous and ActiveEnterprise
formats that have certain features not available within the JMS specification.

TIBCO Enterprise Message Service .NET Reference

StreamMessage | 53

* You can insert another MapMessage Or StreamMessage instance as a
submessage into a MapMessage Or StreamMessage, generating a series of
nested messages, instead of a flat message.

* You can use arrays as well as primitive types for the values.

These extensions add considerable flexibility to the two body types. However,
they are extensions and therefore not compliant with JMS specifications.
Extended messages are tagged as extensions with the vendor property tag
JMS_TIBCO_MSG_EXT.

For more information on message compatibility with Rendezvous messages, see
Message Body on page 87 in TIBCO Enterprise Message Service User’s Guide.

TIBCO Enterprise Message Service .NET Reference

54 |Chapter3 Messages

StreamMessage—Read

Method

Declaration bool ReadBoolean();
sbyte ReadByte();
short ReadShort();
char ReadChar();
int ReadInt();
long ReadLong();
float ReadFloat();
double ReadDouble();
String ReadString();
Object ReadObject();

Purpose Read primitive datatypes from a stream message.

Remarks The JMS specification defines these methods to extract data from a
StreamMessage. (See also StreamMessage .ReadBytes on page 55.)

Each call reads a unit of data from the stream, and advances the read position so
that the next read call gets the next datum.

See Also StreamMessage .ReadBytes on page 55

TIBCO Enterprise Message Service .NET Reference

StreamMessage.ReadBytes | 55

StreamMessage.ReadBytes

Method
Declaration
Purpose

Parameters

Remarks

int ReadBytes(byte[] value);
Read a byte array from a stream message.

Parameter Description

value The program supplies a byte array. The call fills it with bytes
from the stream message.

Each call reads bytes from the stream into the byte array, and advances the read
position.

This call returns the actual number of bytes read. When the call cannot read even
one byte, it returns -1.

A program that calls this method must call it repeatedly until it returns -1,
indicating that the program has extracted the complete set of bytes. Only then
may the program call another read method.

TIBCO Enterprise Message Service .NET Reference

56 |Chapter3 Messages

StreamMessage.Reset

Method
Declaration void Reset();

Purpose Set the read position to the beginning of the stream, and mark the message body
as read-only.

Remarks Reset prepares a message body for reading, as if the message were newly

received. Contrast Message . ClearBody on page 28, which clears a message body
in preparation for writing, as if it were newly created.

TIBCO Enterprise Message Service .NET Reference

StreamMessage—Write | 57

StreamMessage—Write
Method

Declaration void WriteBoolean(bool value);
void WriteByte(byte value);
void WriteShort(short value);
void WriteChar(char value);
void WriteInt(int value);
void WriteLong(long value);
void WriteFloat(float value);
void WriteDouble(double value);
void WriteString(string value);
void WriteObject(Object value);

Purpose Write primitive datatypes to a stream message.
Remarks The JMS specification defines these methods to insert data into a StreamMessage.
(See also StreamMessage.WriteBytes on page 58.)

Each call writes a data value to the stream, and advances the write position so that
the next write call appends to the new end of the stream.

WriteObject converts an object to a primitive value (if possible), and writes that
value to the stream message.

Parameter Description

value Write this datum.

See Also StreamMessage.WriteBytes on page 58

TIBCO Enterprise Message Service .NET Reference

58 |Chapter3 Messages

StreamMessage.WriteBytes

Method

Declaration

Purpose

Parameters

Remarks

void WriteBytes(byte[] value);

void WriteBytes(byte[] value, int offset, int length);

Write bytes from a byte array to a stream message.

Parameter Description

value Write bytes from this byte array to the message.
offset Begin with the byte at this offset within the byte array.
length Write this number of bytes from the byte array.

Each call writes bytes from the byte array into the stream, and advances the write
position.

When the program supplies offset and length arguments, the call attempts to
write the specified bytes to the stream; otherwise it attempts to write the entire
byte array.

When present, the offset and length arguments must be between zero and
value.length (inclusive), and their sum must also fall within the same range.
That is, these two arguments must specify a span of bytes within the value
argument. Otherwise the call throws an IndexOutOfRangeException (and does
not write any bytes).

TIBCO Enterprise Message Service .NET Reference

TextMessage | 59

TextMessage
Class

Declaration class TextMessage : Message
Purpose A message containing a text string.

Remarks ~ Messages with this body type contain a single value, which is a string.

Member Description
Properties
Text string {get; set;}
Programs can get and set the text string in a TextMessage.
Method Description Page
TextMessage Constructor. 60

Superclasses ~ Message on page 24

TIBCO Enterprise Message Service .NET Reference

60 |Chapter3 Messages

TextMessage

Constructor

Declaration public TextMessage(
Session session,
string text);

public ObjectMessage/(
Session session);

Purpose Create a text message.

Parameters Parameter Description

session Associate the new message with this session.

text Use this string as the value of the new message.

See Also Session.CreateTextMessage on page 162

TIBCO Enterprise Message Service .NET Reference

61

Chapter 4 Destination

Topics

® Destination Overview, page 62
e Destination, page 65

* Queue, page 66

o TemporaryQueue, page 68

o Temporarylopic, page 70

s Topic, page 72

TIBCO Enterprise Message Service .NET Reference

62 |Chapter4 Destination

Destination Overview

Destination objects represent destinations within the EMS server—the queues and
topics to which programs send messages, and from which they receive messages.

Queues deliver each message to exactly one consumer. Topics deliver each
message to every subscriber. Queues and topics can be static, dynamic or
temporary.

Table 8 Destination Overview (Sheet 1 of 3)

Aspect Static Dynamic Temporary

Purpose Static destinations let Dynamic destinations give =~ Temporary destinations
administrators configure client programs the are ideal for limited-scope
EMS behavior at the flexibility to define uses, such as reply
enterprise level. destinations as needed for subjects.
Administrators define short-term use.

these administered objects,
and client programs use
them—relieving program
developers and end users
of the responsibility for
correct configuration.

Scope of Static destinations support ~Dynamic destinations Temporary destinations

Delivery concurrent use. That is, support concurrent use. support only local use.
several client processes That is, several client That is, only the client
(and in several threads processes (and in several connection that created a
within a process) can threads within a process) temporary destination can
create local objects can create local objects consume messages from it.
denoting the destination, denoting the destination,

However, servers
connected by routes do
exchange messages sent to
temporary topics.

and consume messages and consume messages
from it. from it.

TIBCO Enterprise Message Service .NET Reference

Destination Overview | 63

Table 8 Destination Overview (Sheet 2 of 3)

Aspect Static Dynamic Temporary
Creation = Administrators create If the server configuration Client programs create
static destinations using permits dynamic temporary destinations;
EMS server administration destinations, client see Session on page 142.
tools or APL programs can create one in
two steps:

1. Create alocal
destination object; see
Session on page 142.

2. Send a message to that
destination, or create a
consumer for it. Either
of these actions
automatically creates
the destination in the
server.

Lookup Client programs lookup Client programs lookup Not applicable.

static destinations by dynamic destinations by
name. Successful lookup name. Successful lookup
returns a local object returns a local object
representation of the representation of the
destination; see destination; see
LookupContext.Lookup LookupContext.Lookup
on page 186. on page 186.

TIBCO Enterprise Message Service .NET Reference

64 | Chapter 4 Destination

Table 8 Destination Overview (Sheet 3 of 3)

Aspect Static Dynamic

Duration A static destination A dynamic destination
remains in the server until remains in the server as
an administrator explicitly = long as at least one client
deletes it. actively uses it. The server

automatically deletes it (at
a convenient time) when
all applicable conditions
are true:

e Topic or Queue all
client programs that
access the destination
have disconnected

e Topic no offline
durable subscribers
exist for the topic

®* Queue queue, no
messages are stored in
the queue

Temporary

A temporary destination
remains in the server either
until the client that created
it explicitly deletes it, or
until the client disconnects
from the server.

TIBCO Enterprise Message Service .NET Reference

Destination | 65

Destination
Class

Declaration class Destination
Purpose Root behavior of all destinations.

Remarks ~ Administrators define destinations in the server. Client programs access them
using methods of LookupContext.

Programs do not create instances of this class; instead, they create instances of its

subclasses.

Subclasses Queue on page 66
TemporaryQueue on page 68

Topic on page 72
TemporaryTopic on page 70

See Also LookupContext on page 182

TIBCO Enterprise Message Service .NET Reference

66 |Chapter4 Destination

Queue
Class

Declaration class Queue : Destination

Purpose Queues deliver each message to exactly one consumer.

Member Description

Properties
QueueName string {get;}
The lookup name of the queue object. Each queue has a name that is unique
among all queues.
Method Description Page
Queue Constructor. 67

Subclasses TemporaryQueue on page 68

TIBCO Enterprise Message Service .NET Reference

Queue | 67

Queue

Constructor

Declaration Queue (
string name);

Purpose Create a queue object.

Remarks This constructor creates only local objects (within the program). It does not
attempt to lookup the corresponding server object until the program creates a
MessageConsumer Or a MessageProducer that uses the queue. That automatic
lookup can result in either of two outcomes:

e If lookup succeeds, it binds the local queue object to the server queue object.

e If lookup fails, the server creates a new dynamic queue.

Parameter Description

name Find or create a queue with this name.

See Also Session.CreateQueue on page 158
LookupContext on page 182

TIBCO Enterprise Message Service .NET Reference

68 |Chapter4 Destination

TemporaryQueue
Class

Declaration class TemporaryQueue : Queue
Purpose Programs can use temporary queues as reply destinations.

Remarks Programs create temporary queues using Session.CreateTemporaryQueue.

A temporary queue exists only for the duration of the session’s connection, and is
available only within that connection.

Only consumers associated with the same connection as the temporary queue can
consume messages from it.

Method Description Page

TemporaryQueue.Delete Delete a temporary queue. 69

See Also Session.CreateTemporaryQueue on page 160

TIBCO Enterprise Message Service .NET Reference

TemporaryQueue.Delete | 69

TemporaryQueue.Delete
Method

Declaration void Delete();
Purpose Delete a temporary queue.

Remarks ~ When a client deletes a temporary queue, the server deletes any unconsumed
messages in the queue.

If the client still has listeners or receivers for the queue, or is in the middle of a
Receive call, then Delete throws an EMSException.

TIBCO Enterprise Message Service .NET Reference

70 |Chapter4 Destination

TemporaryTopic

Class
Declaration class TemporaryTopic : Topic
Purpose Programs can use temporary topics as reply destinations.

Remarks Programs create temporary topics using Session.CreateTemporaryTopic.

A temporary topic exists only for the duration of the session’s connection, and is
available only within that connection.

Only consumers associated with the same connection as the temporary topic can
consume messages from it.

Servers connected by routes do exchange messages sent to temporary topics.

Method Description Page

TemporaryTopic.Delete Delete a temporary topic. 71

See Also Session.CreateTemporaryTopic on page 161

TIBCO Enterprise Message Service .NET Reference

TemporaryTopic.Delete | 71

TemporaryTopic.Delete
Method

Declaration void Delete();
Purpose Delete a temporary topic.

Remarks ~ When a client deletes a temporary topic, the server deletes any unconsumed
messages in the topic.

If the client still has listeners or receivers for the topic, or is in the middle of a
Receive call, then Delete throws an EMSException.

TIBCO Enterprise Message Service .NET Reference

72 |Chapter4 Destination

Topic
Class

Declaration class Topic : Destination

Purpose Topics deliver each message to multiple consumers.

Member Description

Properties
TopicName string {get;}
The lookup name of the topic object. Each topic has a name that is unique
among all topics.
Method Description Page
Topic Constructor. 73

Subclasses TemporaryTopic on page 70

TIBCO Enterprise Message Service .NET Reference

Topic | 73

Topic

Constructor

Declaration Topic(
string name);

Purpose Create a topic object.

Remarks This constructor creates only local objects (within the program). It does not
attempt to lookup the corresponding server object until the program creates a
MessageConsumer Or a MessageProducer that uses the topic. That automatic
lookup can result in either of two outcomes:

e If lookup succeeds, it binds the local topic object to the server topic object.

e If lookup fails, the server creates a new dynamic topic.

Parameter Description

name Find or create a topic with this name.

See Also Session.CreateTopic on page 163
LookupContext on page 182

TIBCO Enterprise Message Service .NET Reference

74 | Chapter 4 Destination

TIBCO Enterprise Message Service .NET Reference

75

Chapter 5 Consumer

Each message consumer receives messages from a destination.

Topics

® MessageConsumer, page 76
* QueueReceiver, page 81

* TopicSubscriber, page 82

TIBCO Enterprise Message Service .NET Reference

76 |Chapter5 Consumer

MessageConsumer
Class

Declaration class MessageConsumer
Purpose Root behavior of all consumers.
Remarks ~ Consumers can receive messages synchronously (using the Receive methods), or

asynchronously.

Consumers can receive messages asynchronously in either of two idioms.
Programmers may select either idiom—but not both (which would cause
duplicate message processing, with undefined behavior).

® MessageHandler events let programs receive messages in a .NET
programming idiom.

® In contrast, the MessageListener property mimics the way in which JMS
provides similar functionality in a Java programming idiom.

Subclasses QueueReceiver
TopicSubscriber

(Sheet 1 of 2)

Member Description

Events

MessageHandler EMSMessageHandler
The client library raises an event when a message arrives at the
destination. The program implements a handler delegate to processes it
asynchronously, and registers the delegate here. See Remarks, above.

Properties

MessageLlistener IMessagelistener {get; set;}

When a message arrives, the client library calls this listener’s onMessage
method with the message as its argument. The program implements the
message listener interface, and registers a message listener object by
setting this property. See Remarks, above.

TIBCO Enterprise Message Service .NET Reference

MessageConsumer | 77

(Sheet 2 of 2)
Member Description
MessageSelector string {get;}
A message selector restricts the set of messages that the consumer
receives to those that match the selector; see Message Selectors on
page 20.
Programs can set this property only when creating the consumer object;
see Session.CreateConsumer on page 152.
Method Description Page
MessageConsumer.Close Stop receiving messages; reclaim resources. 78
MessageConsumer.Receive Receive a message (synchronous). 79
MessageConsumer .ReceiveNoWait Receive a message (synchronous, non-blocking). 80

See Also IMessageListener on page 86
EMSMessageHandler on page 83

TIBCO Enterprise Message Service .NET Reference

78 |Chapter5 Consumer

MessageConsumer.Close

Method
Declaration void Close();
Purpose Stop receiving messages; reclaim resources.

Remarks If areceive call or a message listener is in progress, then Close waits until that call
returns.

Message consumers rely on resources outside the client program. To reclaim these
resources in a timely manner, we recommend that client programs explicitly close
message consumer objects (rather than waiting for garbage collection).

See Also MessageConsumer.Receive on page 79

IMessageListener on page 86
Session.CreateConsumer on page 152

TIBCO Enterprise Message Service .NET Reference

MessageConsumer.Receive | 79

MessageConsumer.Receive

Method

Declaration

Purpose

Remarks

Message Receive();

Message Receive(
long timeout);

Receive a message (synchronous).

Parameter Description

timeout When present, wait no longer than this interval (in
milliseconds) for a message to arrive. Zero is a special value,
which specifies no timeout (block indefinitely).

When absent, the default value is zero.

This method consumes the next message from the destination.
When the destination does not have any messages ready, this method blocks:

e If a message arrives at the destination, this call immediately returns that
message.

e If the (non-zero) timeout elapses before a message arrives, this call returns
null.

e If another thread closes the consumer, this call returns null.

When calling receive within a transaction, the consumer retains the message until
transaction commits.

TIBCO Enterprise Message Service .NET Reference

80 |Chapter5 Consumer

MessageConsumer.ReceiveNoWait

Method
Declaration Message ReceiveNoWait();
Purpose Receive a message (synchronous, non-blocking).

Remarks ~ When the destination has at least one message ready, this method immediately
returns the next message.
When the destination does not have any messages ready, this method
immediately returns null.

When calling receive within a transaction, the consumer retains the message until
transaction commits.

TIBCO Enterprise Message Service .NET Reference

QueueReceiver | 81

QueueReceiver
Class

Declaration class QueueReceiver : MessageConsumer
Purpose Consume messages from a queue.

Remarks This class inherits almost all of its behavior from MessageConsumer. It adds only a
property, specializing the generic destination to a queue.

Member Description

Properties

Queue Queue {get;}
The receiver consumes messages from this queue.

Programs set this queue when creating the receiver, and cannot
subsequently change it.

TIBCO Enterprise Message Service .NET Reference

82 |Chapter5 Consumer

TopicSubscriber
Class

Declaration class TopicSubscriber : MessageConsumer
Purpose Consume messages from a topic.

Remarks This class inherits almost all of its behavior from MessageConsumer; it adds only
two properties.

Member Description

Properties

NoLocal bool {get;}
When true, the subscriber does not receive messages sent through
the same server connection (that is, the connection associated with
the subscriber).
Programs set this property when creating the subscriber, and
cannot subsequently change it.

Topic Topic {get;}

The subscriber consumes messages from this topic.

Programs set this topic property when creating the subscriber, and
cannot subsequently change it.

TIBCO Enterprise Message Service .NET Reference

EMSMessageHandler | 83

EMSMessageHandler
Delegate

Declaration delegate void EMSMessageHandler(
object sender,
EMSMessageEventArgs args);

Purpose Asynchronously process an arriving message.

Remarks This delegate provides an asynchronous pathway for receiving messages. The
program implements this delegate, and registers it with a MessageConsumer.
When a message arrives, the client library raises an event. This delegate processes
the event, which presents the message.

EMSMessageHandler receives messages in a .NET programming idiom. In
contrast, IMessageListener mimics the way in which JMS provides similar
functionality in a Java programming idiom. Programmers may select either
idiom—but not both (which would cause duplicate message processing, with
undefined behavior).

Parameter Description

sender The MessageConsumer object that raised a message event.

args The event, which contains the message object.

Example 1 Message Event Handler
consumer.MessageHandler += new EMSMessageHandler(handleMsg);

private void handleMsg(object sender, EMSMessageEventArgs arg)
{

Message m = arg.Message;
Console.Writeline("Received message:

+ m);

Serialization ~ In compliance with the JMS specification, sessions distribute messages to listeners
and event handler delegates in serial (non-concurrent) fashion.

See Also MessageConsumer on page 76
EMSMessageEventArgs on page 84

TIBCO Enterprise Message Service .NET Reference

84 | Chapter 5 Consumer

EMSMessageEventArgs
Class

Declaration class EMSMessageEventArgs : EventArgs
Purpose Present an arriving message as a .NET event.

Remarks ~ EMSMessageHandler delegates receive this object as an argument.

Properties
Message Message {get;}
Programs can get the message that triggered the event.
Method Description Page
EMSMessageEventArgs Constructor. 85

TIBCO Enterprise Message Service .NET Reference

EMSMessageEventArgs | 85

EMSMessageEventArgs

Constructor

Declaration EMSMessageEventArgs(
Message msg);

Purpose Create a message event.

Parameter Description

msg The new event encapsulates this message, and signals its arrival.

TIBCO Enterprise Message Service .NET Reference

86 |Chapter5 Consumer

IMessageListener

Interface
Declaration interface IMessagelistener

Purpose Asynchronously process an arriving message.

Remarks This interface provides an asynchronous pathway for receiving messages. The
program implements this interface, and registers a message listener with a
MessageConsumer. When a message arrives, the client library calls the listener’s
onMessage method with the message as its argument.

IMessageListener mimics the way in which JMS receives messages in a Java
programming idiom. In contrast, EMSMessageHandler provides similar
functionality in a .NET idiom. Programmers may select either idiom—but not
both (which would cause duplicate message processing, with undefined
behavior).
Method Description Page
IMessagelistener.OnMessage Process inbound messages (asynchronous). 87

Serialization

Deprecated

See Also

In compliance with the JMS specification, sessions distribute messages to listeners
and event handler delegates in serial (non-concurrent) fashion.

In earlier releases, clients could register listeners with sessions as well as
consumers. This practice is now deprecated—we recommend migrating existing
code to one of these two practices:

¢ Javaldiom Register listeners with consumers.
* .NET Idiom Register EMSMessageHandler delegates with consumers.

MessageConsumer on page 76
Session on page 142

TIBCO Enterprise Message Service .NET Reference

IMessageListener.OnMessage | 87

IMessagelistener.OnMessage
Method

Declaration void OnMessage(
Message message);

Purpose Process inbound messages (asynchronous).

Parameter Description

message Process this message.

TIBCO Enterprise Message Service .NET Reference

88 | Chapter 5 Consumer

TIBCO Enterprise Message Service .NET Reference

89

Chapter 6 Producer

Message producers send messages to destinations on the server.

Topics

* MessageProducer, page 90
* QueueSender, page 96
e TopicPublisher, page 99

TIBCO Enterprise Message Service .NET Reference

90 |Chapter6 Producer

MessageProducer
Class

Declaration class MessageProducer
Purpose Root behavior of all producers.
Remarks Clients use message producers to send messages. A message producer object can

store several parameters that affect the messages it sends.

This class lacks a constructor. Instead, clients create message producers using
methods of a Session object; subclasses (such as QueueSession and
TopicSession) each define methods to create corresponding producer
subclasses.

Subclasses QueueSender
TopicPublisher

(Sheet 1 of 3)

Member Description

Properties

DeliveryMode int {get; set;}
Delivery mode instructs the server concerning persistent storage.

Programs can use this property to define a default delivery mode
for messages that this producer sends. Individual sending calls can
override this default value.

For values, see the class DeliveryMode on page 190.

MsgDeliveryMode MessageDeliveryMode {get; set;}

This parallel property accesses the same default value using
enumerated values (instead of ordinary integers). We recommend
it over the ordinary integer-valued accessor, because it enables
.NET to do stronger type checking at compile time, which can
enhance program reliability.

TIBCO Enterprise Message Service .NET Reference

MessageProducer | 91

(Sheet 2 of 3)
Member Description
Destination Destination {get;}
Each send call directs a message to a destination (queue or topic).
This property defines a default destination for messages that this
producer sends. Individual sending calls can override this default
value.
DisableMessagelD bool {get; set;}
Applications that do not require message IDs can reduce overhead
costs by disabling IDs (set this property to true).
DisableMessageTimestamp bool {get; set;}
Applications that do not require timestamps can reduce overhead
costs by disabling timestamps (set this property to true).
Priority int {get; set;}

Priority affects the order in which the server delivers messages to
consumers (higher values first).

The JMS specification defines ten levels of priority value, from
zero (lowest priority) to 9 (highest priority). The specification
suggests that clients consider 0—4 as gradations of normal priority,
and priorities 5-9 as gradations of expedited priority.

Programs can use this property to define a default priority for
messages that this producer sends. Individual sending calls can
override this default value.

TIBCO Enterprise Message Service .NET Reference

92 |Chapter6 Producer

(Sheet 3 of 3)

Member Description

TimeToLive long {get; set;}

Time-to-live (in milliseconds) determines the expiration time of a
message.

o [f the time-to-live is non-zero, the expiration is the sum of that
time-to-live and the sending client’s current time (GMT). This
rule applies even within sessions with transaction semantics—
the timer begins with the send call, not the commit call.

o If the time-to-live is zero, then expiration is also zero—
indicating that the message never expires.

Programs can use this property to define a default time-to-live for
messages that this producer sends. Individual sending calls can
override this default value.

Whenever your application uses non-zero values for message
expiration or time-to-live, you must ensure that clocks are
synchronized among all the host computers that send and receive
messages. Synchronize clocks to a tolerance that is a very small
fraction of the smallest or time-to-live.

Method Description Page

MessageProducer.Close Destroy the producer object; reclaim resources. 93

MessageProducer.Send Send a message. 94

TIBCO Enterprise Message Service .NET Reference

MessageProducer.Close | 93

MessageProducer.Close
Method

Declaration void Close();
Purpose Destroy the producer object; reclaim resources.
Remarks ~ Message producers rely on resources outside the client program. To reclaim these
resources in a timely manner, we recommend that client programs explicitly close

message producer objects (rather than waiting for garbage collection).

See Also Session.CreateProducer on page 157

TIBCO Enterprise Message Service .NET Reference

94 | Chapter 6 Producer

MessageProducer.Send
Method

Declaration virtual void Send(
Destination dest,
Message message,
MessageDeliveryMode deliveryMode,
int priority,
long timeTolLive);

virtual void Send(
Message message,
MessageDeliveryMode deliveryMode,
int priority,
long timeTolive);

virtual void Send(
Destination dest,
Message message,
int deliveryMode,
int priority,
long timeTolive);

virtual void Send(
Message message,
int deliveryMode,
int priority,
long timeTolLive);

virtual void Send(
Destination dest,
Message message);

virtual void Send(
Message message);

Purpose Send a message.

Parameter Description

dest When present, the call sends the message to this destination (queue or topic).

When absent, the call sends the message to the producer’s default
destination. When the producer does not specify a default, the send call must
supply this parameter.

message Send this message object.

TIBCO Enterprise Message Service .NET Reference

MessageProducer.Send | 95

Parameter Description

deliveryMode When present, the call sends the message with this delivery mode.

This argument may be either an enumerated value (see
MessageDeliveryMode on page 194) or an integer (see DeliveryMode on
page 190). We recommend enumerated values, because they enable .NET to
do stronger type checking at compile time, which can enhance program
reliability.

When absent, the call sends the message with the producer’s default delivery
mode.

priority When present, the call sends the message with this priority.

Priority affects the order in which the server delivers messages to consumers
(higher values first). The JMS specification defines ten levels of priority value,
from zero (lowest priority) to 9 (highest priority). The specification suggests
that clients consider 0—4 as gradations of normal priority, and priorities 5-9 as
gradations of expedited priority.

When absent, the call sends the message with the producer’s default priority.

timeToLive When present, the call uses this value (in milliseconds) to compute the
message expiration.

e [f the time-to-live is non-zero, the expiration is the sum of that time-to-live
and the sending client’s current time (GMT). This rule applies even within
sessions with transaction semantics—the timer begins with the send call,
not the commit call.

e If the time-to-live is zero, then expiration is also zero—indicating that the
message never expires.

When absent, the call uses the producer’s default value to compute
expiration.

Whenever your application uses non-zero values for message expiration or
time-to-live, you must ensure that clocks are synchronized among all the host
computers that send and receive messages. Synchronize clocks to a tolerance
that is a very small fraction of the smallest or time-to-live.

TIBCO Enterprise Message Service .NET Reference

96 |Chapter6 Producer

QueueSender
Class

Declaration class QueueSender : MessageProducer
Purpose Send messages to a queue.

Remarks This class extends MessageProducer on page 90. It overloads more send
methods, specializing the destination parameter to a queue.

Properties

Queue Queue {get;}
Each send call directs a message to a queue.
Programs can use this property to define a default queue for messages that this
producer sends. Individual sending calls can override this default value.
Programs set this queue when creating the sender, and cannot subsequently
change it.

Method Description Page

QueueSender.Send Send a message. 97

TIBCO Enterprise Message Service .NET Reference

QueueSender.Send | 97

QueueSender.Send
Method

Declaration virtual void Send(
Queue queue,
Message message,
MessageDeliveryMode deliveryMode,
int priority,
long timeTolLive);

virtual void Send(
Queue queue,
Message message,
int deliveryMode,
int priority,
long timeTolLive);

virtual void Send(

Queue queue,
Message message);

Purpose Send a message.
Remarks QueueSender inherits send methods from MessageProducer, and also defines

these methods, which specialize the destination parameter to a queue; see
MessageProducer.Send on page 94.

Parameter Description

queue When present, the call sends the message to this queue.

When absent, the call sends the message to the sender’s default queue. When
the sender does not specify a default, the send call must supply this
parameter (that is, it cannot use one of the inherited methods that omit this

parameter).
message Send this message object.
deliveryMode When present, the call sends the message with this delivery mode.

This argument may be either an enumerated value (see
MessageDeliveryMode on page 194) or an integer (see DeliveryMode on
page 190). We recommend enumerated values, because they enable .NET to
do stronger type checking at compile time, which can enhance program
reliability.

When absent, the call sends the message with the sender’s default delivery
mode.

TIBCO Enterprise Message Service .NET Reference

98 |Chapter6 Producer

Parameter Description

priority When present, the call sends the message with this priority.

Priority affects the order in which the server delivers messages to consumers
(higher values first). The JMS specification defines ten levels of priority value,
from zero (lowest priority) to 9 (highest priority). The specification suggests
that clients consider 0—4 as gradations of normal priority, and priorities 5-9 as
gradations of expedited priority.

When absent, the call sends the message with the sender’s default priority.

timeToLive When present, the call uses this value (in milliseconds) to compute the
message expiration.

e [f the time-to-live is non-zero, the expiration is the sum of that time-to-live
and the sending client’s current time (GMT).

o [f the time-to-live is zero, then expiration is also zero—indicating that the
message never expires.

When absent, the call uses the sender’s default value to compute expiration.

Whenever your application uses non-zero values for message expiration or
time-to-live, you must ensure that clocks are synchronized among all the host
computers that send and receive messages. Synchronize clocks to a tolerance
that is a very small fraction of the smallest or time-to-live.

See Also MessageProducer. Send on page 94

TIBCO Enterprise Message Service .NET Reference

TopicPublisher | 99

TopicPublisher
Class

Declaration class TopicPublisher : MessageProducer
Purpose Send a message to a topic.

Remarks This class extends MessageProducer on page 90. It overloads more send
methods, specializing the destination parameter to a topic.

Properties

Topic Topic {get;}
Each send call directs a message to a topic.
Programs can use this property to define a default topic for messages that this
publisher sends. Individual sending calls can override this default value.
Programs set this topic when creating the publisher, and cannot subsequently
change it.

Method Description Page

TopicPublisher.Publish Publish a message to a topic. 100

TIBCO Enterprise Message Service .NET Reference

100 |Chapter6 Producer

TopicPublisher.Publish
Method

Declaration virtual void Publish(
Topic topic,
Message message,
MessageDeliveryMode deliveryMode,
int priority,
long timeTolLive);

virtual void Publish(
Message message,
MessageDeliveryMode deliveryMode,
int priority,
long timeTolive);

virtual void Publish(
Topic topic,
Message message,
int deliveryMode,
int priority,
long timeTolive);

virtual void Publish(
Message message,
int deliveryMode,
int priority,
long timeTolLive);

virtual void Publish(
Topic topic,
Message message);

virtual void Publish(
Message message);

Purpose Publish a message to a topic.

Remarks These methods are parallel to the send methods that TopicPublisher inherits
from MessageProducer, and they accomplish the same goal—sending messages.

Parameter Description

topic When present, the call sends the message to this topic.

When absent, the call sends the message to the publisher’s default topic.
When the publisher does not specify a default, the publish call must supply
this parameter.

message Publish this message.

TIBCO Enterprise Message Service .NET Reference

TopicPublisher.Publish | 101

Parameter Description

deliveryMode When present, the call sends the message with this delivery mode.

This argument may be either an enumerated value (see
MessageDeliveryMode on page 194) or an integer (see DeliveryMode on
page 190). We recommend enumerated values, because they enable .NET to
do stronger type checking at compile time, which can enhance program
reliability.

When absent, the call sends the message with the publisher’s default delivery
mode.

priority When present, the call sends the message with this priority.

Priority affects the order in which the server delivers messages to consumers
(higher values first). The JMS specification defines ten levels of priority value,
from zero (lowest priority) to 9 (highest priority). The specification suggests
that clients consider 0—4 as gradations of normal priority, and priorities 5-9 as
gradations of expedited priority.

When absent, the call sends the message with the publisher’s default priority.

timeToLive When present, the call uses this value (in milliseconds) to compute the
message expiration.

e [f the time-to-live is non-zero, the expiration is the sum of that time-to-live
and the sending client’s current time (GMT).

o [f the time-to-live is zero, then expiration is also zero—indicating that the
message never expires.

When absent, the call uses the publisher’s default value to compute
expiration.

Whenever your application uses non-zero values for message expiration or
time-to-live, you must ensure that clocks are synchronized among all the host
computers that send and receive messages. Synchronize clocks to a tolerance
that is a very small fraction of the smallest or time-to-live.

See Also MessageProducer.Send on page 94

TIBCO Enterprise Message Service .NET Reference

102 | Chapter 6 Producer

TIBCO Enterprise Message Service .NET Reference

103

Chapter 7 Requestor

Requestors implement convenience methods for request-reply semantics. They
send messages (called requests) and wait for reply messages in response.

Topics

* QueueRequestor, page 104
o TopicRequestor, page 108

TIBCO Enterprise Message Service .NET Reference

104 | Chapter 7 Requestor

QueueRequestor

Class
Declaration class QueueRequestor
Purpose Encapsulate request-reply semantics, sending requests to a queue.

Remarks ~ We recommend that programs follow these steps:
1. Create a QueueSession, and use it to create a Queue for requests and replies.
2. Create a QueueRequestor, using the queue session and queue as arguments.

3. Send arequest and receive a reply. You may repeat this step for several request
and reply pairs.

4. Close the requestor object. The Close method also closes the requestor’s
session as a side effect.

Method Description Page

QueueRequestor Create a queue requestor. 105

QueueRequestor.Close Close a queue requestor. 106

QueueRequestor.Request Send a request message; wait for a reply and 107
return it.

See Also Queue on page 66
QueueSession on page 170

TIBCO Enterprise Message Service .NET Reference

QueueRequestor | 105

QueueRequestor

Constructor

Declaration QueueRequestor (
QueueSession session,
Queue queue);

Purpose Create a queue requestor.

Parameter Description

session The requestor operates within this queue session.

This session must not use transaction semantics. Its delivery mode must be
either AutoAcknowledge or DupsOkAcknowledge.

The Close method also closes this session as a side effect.

queue The requestor sends request messages to this queue, and waits for replies on
the same queue.

You must create this queue using the queue session you supply as the first
argument.

TIBCO Enterprise Message Service .NET Reference

106 |Chapter7 Requestor

QueueRequestor.Close

Method
Declaration void Close ();
Purpose Close a queue requestor.

Remarks This method also closes the requestor’s session as a side effect.

TIBCO Enterprise Message Service .NET Reference

QueueRequestor.Request | 107

QueueRequestor.Request
Method

Declaration Message Request(
Message message);

Purpose Send a request message; wait for a reply and return it.

Remarks The requestor receives only the first reply. It discards other replies that arrive

subsequently.
Parameter Description
message Send this request message.

TIBCO Enterprise Message Service .NET Reference

108 |Chapter7 Requestor

TopicRequestor

Class
Declaration class TopicRequestor
Purpose Encapsulate request-reply semantics, sending requests to a topic.

Remarks ~ We recommend that programs follow these steps:
1. Create a TopicSession, and use it to create a Topic for requests and replies.
2. Create a TopicRequestor, using the topic session and topic as arguments.

3. Send arequest and receive a reply. You may repeat this step for several request
and reply pairs.

4. Close the requestor object. The Close method also closes the requestor’s
session as a side effect.

Method Description Page

TopicRequestor Create a topic requestor. 109

TopicRequestor.Close Close a topic requestor. 110

TopicRequestor.Request Send a request message; wait for a reply and 111
return it.

See Also Topic onpage 72
TopicSession on page 171

TIBCO Enterprise Message Service .NET Reference

TopicRequestor | 109

TopicRequestor

Constructor

Declaration TopicRequestor (
TopicSession session,
Topic topic);

Purpose Create a topic requestor.

Parameter Description

session The requestor operates within this topic session.

This session must not use transaction semantics. Its delivery mode must be
either AutoAcknowledge or DupsOkAcknowledge.

The Close method also closes this session as a side effect.

topic The requestor sends request messages to this topic, and waits for replies on
the same topic.

You must create this topic using the topic session you supply as the first
argument.

TIBCO Enterprise Message Service .NET Reference

110 |Chapter7 Requestor

TopicRequestor.Close

Method
Declaration void Close ();
Purpose Close a topic requestor.

Remarks This method also closes the requestor’s session as a side effect.

TIBCO Enterprise Message Service .NET Reference

TopicRequestor.Request | 111

TopicRequestor.Request
Method

Declaration Message Request(
Message message);

Purpose Send a request message; wait for a reply and return it.

Remarks The requestor receives only the first reply. It discards other replies that arrive

subsequently.
Parameter Description
message Send this request message.

TIBCO Enterprise Message Service .NET Reference

112 | Chapter 7 Requestor

TIBCO Enterprise Message Service .NET Reference

113

Chapter 8 Connection

Connection objects represent a client program’s network connection to the server.

Topics

* Connection, page 114

* ConnectionMetaData, page 121

* QueueConnection, page 122

* TopicConnection, page 124

* EMSExceptionHandler, page 126

e EMSExceptionEventArgs, page 127
e [ExceptionListener, page 129

TIBCO Enterprise Message Service .NET Reference

114 | Chapter 8 Connection

Connection
Class
Declaration class Connection

Purpose Encapsulate a server connection.

Remarks ~ When a program first opens a connection, the connection is stopped—that is, it
does not deliver inbound messages. To begin the flow of inbound messages, the
program must explicitly call the Start method. (Outbound messages flow even
before calling Start.)

The EMS .NET API does not support the optional methods
createConnectionConsumer and createDurableConnectionConsumer.
Asynchronous ~ When a program uses a connection to send messages, the send calls can detect
Exceptions problems with the connection, and notify the client program (synchronously) by

(Sheet 1 of 3)

throwing exceptions.

However, when a program uses a connection only to receive messages, the client
cannot catch such exceptions. Instead, programs can handle such exceptions
asynchronously in one of two idioms. Programmers may select either idiom—but
not both (which would cause duplicate exception processing, with undefined
behavior).

® ExceptionHandler events detect this type of problem in a .NET
programming idiom.

¢ In contrast, the ExceptionListener property mimics the way in which JMS
provides similar functionality in a Java programming idiom.

Member Description

Events

ExceptionHandler EMSExceptionHandler

The client library raises an event if it detects a problem with the
connection. The program implements a handler delegate to processes it
asynchronously, and registers the delegate here. See Asynchronous
Exceptions, above. See EMSExceptionHandler on page 126.

TIBCO Enterprise Message Service .NET Reference

Connection | 115

(Sheet 2 of 3)

Member Description

Properties

ActiveURL string {get;}

This property holds the URL of the server at the other endpoint of the
connection. When the connection interacts with several servers in a
fault-tolerant arrangement, this property indicates the current active
server.

ClientID string {get; set;}
This property holds the unique client ID of the connection.

Client IDs partition the namespace of durable subscribers; see
Session.CreateDurableSubscriber on page 153.

Administrators can configure ConnectionFactory objects to assign
client IDs to new connections. Alternatively, administrators can allow
client programs to assign their own IDs. If the factory does not assign an
ID, the program may set this property. However, it is illegal to overwrite
an existing client ID value, and or to set this property after using the
connection in any way (for example, after creating a session, or starting
the connection); attempting to set this property in these situations results
inIllegalStateException.

ExceptionListener IExceptionlListener {get; set;}

This is an alternate pathway for alerting a client program of connection
problems. The program implements the exception listener interface, and
registers an exception listener object by setting this property. When the
client library detects a connection problem, it calls the listener’s
onException method with an exception argument that details the
problem.

See Asynchronous Exceptions, above. See IExceptionListener on
page 129.

IsClosed bool {get;}

This property is true if the connection has been closed; otherwise false.

IsSecure bool {get;}

This property is true if the connection communicates with a secure
protocol; otherwise false.

TIBCO Enterprise Message Service .NET Reference

116 |Chapter8 Connection

(Sheet 3 of 3)
MetaData ConnectionMetaData {get;}
Programs can get the connection’s metadata object.
Method Description Page
Connection.Close Close the connection; reclaim resources. 117
Connection.CreateSession Create a session object. 118
Connection.Start Start delivering inbound messages. 119
Connection.Stop Stop delivering inbound messages. 120

Subclasses QueueConnection on page 122
TopicConnection on page 124

TIBCO Enterprise Message Service .NET Reference

Connection.Close

Connection.Close

Method
Declaration
Purpose

Remarks

Blocking

Acknowledge

Transactions

See Also

virtual void Close();
Close the connection; reclaim resources.

Closing the connection is sufficient to reclaim all of its resources; you need not
separately close the sessions, producers, and consumers associated with the
connection.

Closing a connection deletes all temporary destinations associated with the
connection.

If any message listener or receive call associated with the connection is processing
a message when the program calls this method, all facilities of the connection and
its sessions remain available to those listeners until they return. In the meantime,
this method blocks until that processing completes—that is, until all message
listeners and receive calls have returned.

Closing a connection does not force acknowledgment in client-acknowledged
sessions. When the program still has a message that it received from a connection
that has since closed, its Message . Acknowledge method throws
TllegalStateException.

Closing a connection rolls back all open transactions in all sessions associated
with the connection.

Message.Acknowledge on page 27
MessageConsumer on page 76
MessageProducer on page 90
Destination on page 65

Session on page 142
IMessageListener on page 86
IllegalStateException on page 236

TIBCO Enterprise Message Service .NET Reference

117

118 |Chapter8 Connection

Connection.CreateSession
Method

Declaration virtual Session CreateSession(
bool transacted,
SessionMode acknowledgeMode);
virtual Session CreateSession(

bool transacted,
int acknowledgeMode);

Purpose Create a session object.

Remarks The new session uses the connection for all server communications.

Parameter Description

transacted When true, the new session has transaction semantics.

When false, it has non-transaction semantics.

acknowledgeMode This parameter determines the acknowledge mode of the session.
Supply a value enumerated by the members of SessionMode.

For backward compatibility, you may also supply an integer value from the
members of Session.

See Also Message .Acknowledge on page 27
Session on page 142
Acknowledge Modes on page 146
SessionMode on page 168

TIBCO Enterprise Message Service .NET Reference

Connection.Start | 119

Connection.Start

Method
Declaration
Purpose

Remarks

See Also

virtual void Start();
Start delivering inbound messages.

When a connection is created, it is stopped. It does not deliver inbound messages
until the program calls this method to explicitly start it.

If the connection is not stopped, this call has no effect.

Outbound messages flow even before calling Start.

Connection.Stop on page 120

TIBCO Enterprise Message Service .NET Reference

120 |Chapter8 Connection

Connection.Stop

Method
Declaration
Purpose

Remarks

Effect

Blocking

Sending

See Also

virtual void Stop();
Stop delivering inbound messages.
This call temporarily stops the connection from delivering inbound messages. A

program can restart delivery by calling Connection.Start.

When a connection is created, it is stopped. It does not deliver inbound messages
until the program calls this method to explicitly start it.

If the connection is already stopped, this call has no effect.
When this call returns, the connection has stopped delivery to all consumers
associated with the connection:

* Messages do not arrive to trigger asynchronous message handler events, nor
message listeners.

¢ Synchronous receive methods block. If their timeout intervals expire, they
return null.

If any message listener or receive call associated with the connection is processing
a message when the program calls this method, all facilities of the connection and
its sessions remain available to those listeners until they return. In the meantime,
this method blocks until that processing completes—that is, until all message
listeners and receive calls have returned.

However, the stopped connection prevents the client program from processing
any new messages.

A stopped connection can still send outbound messages.

Connection.Start on page 119

TIBCO Enterprise Message Service .NET Reference

ConnectionMetaData | 121

ConnectionMetaData

Class

Declaration class ConnectionMetaData

Purpose Information about the provider.

Remarks Programs can retrieve this object from a connection; see MetaData on page 116.

Member Description
Properties
JMSXPropertyNames System.Collections.IEnumerator {get;}

Enumerates the JMS message properties; see JMS Properties on
page 19.

MajorVersion

int {get;}

Major version number of the JMS specification that the provider
supports.

MinorVersion int {get;}
Minor version number of the JMS specification that the provider
supports.

Version string {get;}

Version number of the JMS specification that the provider supports.

ProviderMajorVersion

int {get;}

Major version number of the provider (EMS).

ProviderMinorVersion

int {get;}

Minor version number of the provider (EMS).

ProviderVersion string {get;}
Version number of the provider (EMS).
ProviderName string {get;}

Vendor name of the provider.

TIBCO Enterprise Message Service .NET Reference

122 |Chapter8 Connection

QueueConnection

Class
Declaration class QueueConnection : Connection
Purpose Backward compatibility. Connection restricted to queue operations.
Remarks This class supports existing programs that use it.
For new programs, we recommend using the more general class, Connection on
page 114, instead.
Method Description Page
QueueConnection.CreateQueueSession Backward Compatibility. Create a queue 123

session object.

TIBCO Enterprise Message Service .NET Reference

QueueConnection.CreateQueueSession

QueueConnection.CreateQueueSession

Method

Declaration

Purpose

Remarks

virtual QueueSession CreateQueueSession(
bool transacted,
SessionMode acknowledgeMode);

virtual QueueSession CreateQueueSession(
bool transacted,
int acknowledgeMode);

Backward compatibility. Create a queue session object.

The new queue session uses the connection for all server communications.

Parameter Description

transacted

When true, the new session has transaction semantics.

When false, it has non-transaction semantics.

acknowledgeMode

This parameter determines the acknowledge mode of the session.
Supply a value enumerated by the members of SessionMode.

For backward compatibility, you may also supply an integer value from the
members of Session.

See Also

Message .Acknowledge on page 27
QueueSession on page 170
Acknowledge Modes on page 146
SessionMode on page 168

TIBCO Enterprise Message Service .NET Reference

123

124 | Chapter 8 Connection

TopicConnection

Class
Declaration class TopicConnection : Connection
Purpose Backward compatibility. Connection restricted to topic operations.
Remarks This class supports existing programs that use it.
For new programs, we recommend using the more general class, Connection on
page 114, instead.
Method Description Page

TopicConnection.CreateTopicSession Backward compatibility. Create a topic session 125
object.

TIBCO Enterprise Message Service .NET Reference

TopicConnection.CreateTopicSession

TopicConnection.CreateTopicSession

Method

Declaration

Purpose

Remarks

virtual TopicSession CreateTopicSession(
bool transacted,
SessionMode acknowledgeMode);

virtual TopicSession CreateTopicSession(
bool transacted,
int acknowledgeMode);

Backward compatibility. Create a topic session object.

The new topic session uses the connection for all server communications.

Parameter Description

transacted

When true, the new session has transaction semantics.

When false, it has non-transaction semantics.

acknowledgeMode

This parameter determines the acknowledge mode of the session.
Supply a value enumerated by the members of SessionMode.

For backward compatibility, you may also supply an integer value from the
members of Session.

See Also

Message .Acknowledge on page 27
TopicSession on page 171
Acknowledge Modes on page 146
SessionMode on page 168

TIBCO Enterprise Message Service .NET Reference

125

126 |Chapter8 Connection

EMSExceptionHandler
Delegate

Declaration delegate void EMSExceptionHandler(
object sender,
EMSExceptionEventArgs args);

Purpose Asynchronously detect problems with connections.

Remarks ~ When a program uses a connection to send messages, the send calls can detect
problems with the connection, and notify the client program by throwing
exceptions. However, when a program uses a connection only to receive
messages, the client cannot catch such exceptions.

This delegate provides an alternate pathway for alerting a client program of
connection problems. The program implements this delegate, and registers it with
the connection. When the client library detects a connection problem, it raises an
event. This delegate processes the event, which contains an exception that details
the problem.

EMSExceptionHandler detects this type of problem in a .NET programming
idiom. In contrast, IExceptionListener mimics the way in which JMS provides
similar functionality in a Java programming idiom. Programmers may select
either idiom—but not both (which would cause duplicate exception processing,
with undefined behavior).

Parameter Description

sender The problematic connection object.

args The event, which contains the exception object.

Example 2 Exception Event Handler
connection.ExceptionHandler += new EMSExceptionHandler(handleEx);

private void handleEx(object sender, EMSExceptionEventArgs arg)

{
EMSException e = arg.Exception;

Console.WriteLine("Exception: " + e.Message);

See Also Connection on page 114
EMSExceptionHandler on page 126
EMSExceptionEventArgs on page 127

TIBCO Enterprise Message Service .NET Reference

EMSEXxceptionEventArgs | 127

EMSExceptionEventArgs
Class

Declaration class EMSMessageEventArgs : EventArgs
Purpose Present a connection problem as a .NET event.

Remarks ~ EMSExceptionHandler delegates receive this object as an argument.

Member Description
Properties
Exception EMSException {get;}
Programs can get the exception that details the problem.
Method Description Page
EMSMessageEventArgs Constructor. 85

See Also EMSExceptionHandler on page 126

TIBCO Enterprise Message Service .NET Reference

128 |Chapter8 Connection

EMSExceptionEventArgs

Constructor

Declaration EMSExceptionEventArgs(
EMSException emse);

Purpose Create an exception event.

Parameter Description

emse The new event encapsulates this exception, and signals its arrival.

TIBCO Enterprise Message Service .NET Reference

IExceptionListener | 129

IExceptionListener

Interface
Declaration
Purpose

Remarks

Method

interface IExceptionListener
Asynchronously detect problems with connections.

When a program uses a connection to send messages, the send calls can detect
problems with the connection, and notify the client program by throwing
exceptions. However, when a program uses a connection only to receive
messages, the client cannot catch such exceptions.

This interface provides an alternate pathway for alerting a client program of
connection problems. The program implements this interface, and registers an
exception listener with the connection object. When the client library detects a
connection problem, it calls the listener’s onException method with an exception
argument that details the problem.

IExceptionListener mimics the way in which JMS detects this type of problem
in a Java programming idiom. In contrast, EMSExceptionHandler provides
similar functionality in a .NET idiom. Programmers may select either idiom—but
not both (which would cause duplicate exception processing, with undefined
behavior).

Description Page

IExceptionListener.OnException Handle connection exceptions asynchronously. 130

See Also

Connection on page 114
EMSExceptionHandler on page 126

TIBCO Enterprise Message Service .NET Reference

130 |Chapter8 Connection

IExceptionListener.OnException

Method

Declaration void OnException(
EMSException exception);

Purpose Handle connection exceptions asynchronously.

Parameter Description

exception Handle this exception.

TIBCO Enterprise Message Service .NET Reference

131

Chapter9 Connection Factory

Connection factories let administrators preconfigure client connections to the
EMS server.

Topics

* ConnectionFactory, page 132
* QueueConnectionFactory, page 137
* TopicConnectionFactory, page 139

TIBCO Enterprise Message Service .NET Reference

132 | Chapter 9 Connection Factory

ConnectionFactory
Class

Declaration class ConnectionFactory
Purpose Administered object for creating server connections.

Remarks Connection factories are administered objects. They support concurrent use.

Administrators define connection factories in a repository. Each connection
factory has administrative parameters that guide the creation of server
connections. Usage follows either of two models:

EMS Server You can use the EMS server as a name service provider—one tibemsd process
provides both the name repository and the message service. Administrators
define factories in the name repository. Client programs create connection factory
objects with the URL of the repository, and call the
ConnectionFactory.CreateConnection method. This method automatically
accesses the corresponding factory in the repository, and uses it to create a
connection to the message service.

Separate JINDI Administrators define factories in a JNDI repository. Client programs call

Repository LookupContext .Lookup to retrieve factories, and use them to create connections
to the server.

Member Description

Properties

Metric FactoryLoadBalanceMetric Metric {get; set;}
When the connection factory balances the client load among several servers,
it uses this metric to determine the least loaded server, so the connection
factory can create a connection to it. For values, see
FactoryLoadBalanceMetric on page 136.

Method Description Page

ConnectionFactory Constructor. 134

ConnectionFactory.CreateConnection Create a connection object. 135

TIBCO Enterprise Message Service .NET Reference

Administered
Objects

Subclasses

See Also

ConnectionFactory | 133

Administered objects let administrators configure EMS behavior at the enterprise
level. Administrators define these objects, and client programs use them. This
arrangement relieves program developers and end users of the responsibility for

correct configuration.

QueueConnectionFactory on page 137
TopicConnectionFactory on page 139

LookupContext on page 182

TIBCO Enterprise Message Service .NET Reference

134 | Chapter 9 Connection Factory

ConnectionFactory

Constructor

Declaration ConnectionFactory(
string serverUrl,
string clientId,
Hashtable properties);

ConnectionFactory(
string serverUrl,
string clientId);

ConnectionFactory(
string serverUrl);

ConnectionFactory();
Purpose Create a connection factory.

Remarks When administrators define factories in the EMS server, these constructors
automatically access the corresponding objects in the repository.

Parameter Description
serverUrl The constructor contacts the EMS server at this URL, to access a factory.
clientId A client ID string lets the server associate a client-specific factory with each

client program. When present, the server supplies that factory to the client. If
a factory does not yet exist for the client, the server creates one, and stores it
for future use by that specific client.

properties When present, these properties govern the behavior of the connection objects
that a client-specific factory creates. For a list of properties, see
Connection-Related Fields (Constants) on page 195.

Reconnect and To enable reconnection behavior and fault tolerance, the serverURL parameter

Fault Tolerance must be a comma-separated list of two or more URLs. In a situation with only one
server, you may supply two copies of that server’s URL to enable client
reconnection (for example, tcp://localhost:7222,tcp://localhost:7222).

See Also LookupContext on page 182

TIBCO Enterprise Message Service .NET Reference

ConnectionFactory.CreateConnection | 135

ConnectionFactory.CreateConnection
Method

Declaration Connection CreateConnection(
string userName,
string password);

Connection CreateConnection();

Purpose Create a connection object.

When the identity parameters are absent, the connection object presents a default
user identity. If the server configuration permits that user, then the call succeeds.

Parameter Description

userName When present, the connection object presents this user identity to the server.
password When present, the connection object authenticates the user identity with this
password.

See Also Connection on page 114

TIBCO Enterprise Message Service .NET Reference

136 | Chapter 9 Connection Factory

FactoryLoadBalanceMetric
Class

Declaration enum FactorylLoadBalanceMetric
Purpose Define enumerated load balancing constants.

Remarks ~ When a connection factory balances the client load among several servers, it uses
this metric to determine the least loaded server, so the connection factory can
create a connection to it.

Member Description

Fields

None Indicates absence of any load balancing metric.

Connections The connection factory balances the connection load among several servers by
creating a connection to the server with the fewest number of connections.

ByteRate The connection factory balances the connection load among several servers by
creating a connection to the server with the lowest total byte rate (input and
output).

See Also ConnectionFactory on page 132

TIBCO Enterprise Message Service .NET Reference

QueueConnectionFactory | 137

QueueConnectionFactory

Class
Declaration class QueueConnectionFactory : ConnectionFactory
Purpose Backward compatibility. Administered object for creating queue connections.
Remarks This class supports existing programs that use it.
For new programs, we recommend using the more general class,
ConnectionFactory on page 132, instead.
Method Description Page
QueueConnectionFactory Constructor. —
Same method signatures as the constructors
for ConnectionFactory on page 134.
QueueConnectionFactory.CreateQueue Create a queue connection object. 138
Connection

TIBCO Enterprise Message Service .NET Reference

138 | Chapter 9 Connection Factory

QueueConnectionFactory.CreateQueueConnection
Method

Declaration QueueConnection CreateQueueConnection(
string userName,
string password);

QueueConnection CreateQueueConnection();
Purpose Create a queue connection object.

Remarks ~ When the identity parameters are absent, the connection object presents a default
user identity. If the server configuration permits that user, then the call succeeds.

Parameter Description

userName When present, the connection object presents this user identity to the server.
password When present, the connection object authenticates the user identity with this
password.

See Also QueueConnection on page 122

TIBCO Enterprise Message Service .NET Reference

TopicConnectionFactory | 139

TopicConnectionFactory

Class
Declaration class TopicConnectionFactory : ConnectionFactory
Purpose Backward compatibility. Administered object for creating topic connections.
Remarks This class supports existing programs that use it.
For new programs, we recommend using the more general class,
ConnectionFactory on page 132, instead.
Method Description Page
TopicConnectionFactory Constructor. —
Same method signatures as the constructors
for ConnectionFactory on page 134.
TopicConnectionFactory.CreateTopic Create a topic connection object. 140
Connection

TIBCO Enterprise Message Service .NET Reference

140 | Chapter 9 Connection Factory

TopicConnectionFactory.CreateTopicConnection
Method

Declaration TopicConnection CreateTopicConnection(
string userName,
string password);

TopicConnection CreateTopicConnection();
Purpose Create a topic connection object.

Remarks ~ When the identity parameters are absent, the connection object presents a default
user identity. If the server configuration permits that user, then the call succeeds.

Parameter Description

userName When present, the connection object presents this user identity to the server.
password When present, the connection object authenticates the user identity with this
password.

See Also TopicConnection on page 124

TIBCO Enterprise Message Service .NET Reference

141

Chapter 10 Session

A session is a single-threaded context for producing and consuming messages.

Topics

® Session, page 142

* SessionMode, page 168
* QueueSession, page 170
o TopicSession, page 171

TIBCO Enterprise Message Service .NET Reference

142 |Chapter 10 Session

Session
Class
Declaration class Session
Purpose Main organizing context for message activity.
Remarks Sessions combine several roles:

Single Thread

Associated
Objects

Corollary

Asynchronous

e Factory for message producers and consumers
e Factory for message objects

e Factory for temporary destinations

e Factory for dynamic destinations

* Factory for queue browsers

e Serializer for inbound and outbound messages

® Serializer for asynchronous message events (or message listeners) of its
consumer objects

¢ Cache for inbound messages (until the program acknowledges them).

e Transaction support (when enabled).

The JMS specification restricts programs to use each session within a single
thread.

The same single-thread restriction applies to objects associated with a session—
namely, messages, message consumers, durable subscribers, message producers,
queue browsers, and temporary destinations (however, static and dynamic
destinations are exempt from this restriction).

One consequence of this rule is that all the consumers of a session must deliver
messages in the same mode—either synchronously or asynchronously.

In asynchronous delivery, the program registers message handler events or
message listeners with the session’s consumer objects. An internal dispatcher
thread delivers messages to those event handlers or listeners (in all the session’s
consumer objects). No other thread may use the session (nor objects created by
the session).

TIBCO Enterprise Message Service .NET Reference

Session | 143

Synchronous In synchronous delivery, the program explicitly begins a thread for the session.
That thread processes inbound messages and produces outbound messages,
serializing this activity among the session’s producers and consumers. Methods
that request the next message (such as MessageConsumer.Receive) can organize
the thread’s activity.

Close The only exception to the rule restricting session calls to a single thread is the
method Session.Close; programs can call Close from any thread at any time.

Transactions A session has either transaction or non-transaction semantics. When a program
specifies transaction semantics, the session object cooperates with the server, and
all messages that flow through the session become part of a transaction.

¢ When the program calls Session.Commit, the session acknowledges all
inbound messages in the current transaction, and the server delivers all
outbound messages in the current transaction to their destinations.

e [f the program calls Session.Rollback, the session recovers all inbound
messages in the current transaction (so the program can consume them in a
new transaction), and the server destroys all outbound messages in the
current transaction.

After these actions, both Commit and Rollback immediately begin a new
transaction.

(Sheet 1 of 2)

Member Description

Properties

AcknowledgeMode int {get;}

This mode governs message acknowledgement and redelivery for
consumers associated with the session. For values, see Acknowledge
Modes on page 146.

This property is irrelevant when IsTransacted is true.

SessionAcknowledgeMode SessionMode {get;}

This parallel property accesses the same information using
enumerated values (instead of ordinary integers). We recommend it
over the ordinary integer-valued accessor, because it enables .NET to
do stronger type checking at compile time, which can enhance
program reliability. For values, see SessionMode on page 168.

TIBCO Enterprise Message Service .NET Reference

144 | Chapter 10 Session

(Sheet 2 of 2)

Member Description

Connection Connection {get;}

The session is associated with this connection.

IsClosed bool {get;}

When true, the session has been closed.

When false, the session is valid.

Messagelistener IMessagelistener {get; set;}

Obsolete

This property is deprecated; use the property of MessageConsumer

with same name—MessageListener on page 76, or

MessageHandler on page 76.

SessID long {get;}
Session ID.
IsTransacted bool {get;}

When true, the session has transaction semantics, and

AcknowledgeMode is irrelevant.

When false, it has non-transaction semantics.

(Sheet 1 of 2)

Method Description Page
Messages

Session.CreateBytesMessage Create a byte array message. 151
Session.CreateMapMessage Create a map message. 155
Session.CreateObjectMessage Create an object message. 156
Session.CreateStreamMessage Create a stream message. 159
Session.CreateTextMessage Create a text message. 162

TIBCO Enterprise Message Service .NET Reference

Session | 145

(Sheet 2 of 2)
Method Description Page
Destinations
Session.CreateBrowser Create a queue browser. 150
Session.CreateTemporaryQueue Create a temporary queue. 160
Session.CreateTemporaryTopic Create a temporary topic. 161
Session.CreateQueue Create a queue. 158
Session.CreateTopic Create a topic. 163
Consumers & Producers
Session.CreateConsumer Create a message consumer. 152
Session.CreateDurableSubscriber Create a durable topic subscriber. 153
Session.CreateProducer Create a message producer. 157
Session.Unsubscribe Unsubscribe a durable topic subscription. 167
Transactions
Session.Commit Commit the open transaction. 149
Session.Rollback Roll back messages in the current transaction. 165
Other
Session.Close Close a session; reclaim resources. 148
Session.Recover Recover from undetermined state during 164

message processing.

Session.Run

Obsolete. Do not call. 166

TIBCO Enterprise Message Service .NET Reference

146 |Chapter 10 Session

(Sheet 1 of 2)

Field Description

SESSION_TRANSACTED int

The IsTransacted property has this value (true) if
the session uses transaction semantics.

Acknowledge Modes

AUTO_ACKNOWLEDGE int

In this mode, the session automatically
acknowledges a message when message processing
is finished—that is, in either of these methods
returns successfully:

e synchronous Receive call

e asynchronous listener handler

CLIENT_ACKNOWLEDGE int

In this mode, the client program acknowledges
receipt by calling Message . Acknowledge on page 27.
Each call acknowledges all messages received so far.

DUPS_OK_ACKNOWLEDGE int

As with AUTO_ACKNOWLEDGE, the session
automatically acknowledges messages. However, it
may do so lazily. Lazy means that the provider client
library can delay transferring the acknowledgement
to the server until a convenient time; meanwhile the
server might redeliver the message. Lazy
acknowledgement can reduce session overhead.

EXPLICIT_CLIENT_ ACKNOWLEDGE int

As with CLIENT_ACKNOWLEDGE, the client program
acknowledges receipt by calling

Message . Acknowledge on page 27. However, each
call acknowledges only the individual message. The
client may acknowledge messages in any order.

This mode and behavior are proprietary extensions,
specific to TIBCO EMS.

TIBCO Enterprise Message Service .NET Reference

Session | 147

(Sheet 2 of 2)

Field Description

EXPLICIT_ CLIENT_DUPS_OK_ ACKNOWLEDGE int

In EXPLICIT_CLIENT_DUPS_OK_ACKNOWLEDGE mode,
the client program lazily acknowledges only the
individual message, by calling
Message.Acknowledge on page 27. The client may
acknowledge messages in any order.

Lazy means that the provider client library can delay
transferring the acknowledgement to the server until
a convenient time; meanwhile the server might
redeliver the message.

This mode and behavior are proprietary extensions,
specific to TIBCO EMS.

NO_ACKNOWLEDGE int

In NO_ACKNOWLEDGE mode, messages do not require
acknowledgement (which reduces message
overhead). The server never redelivers messages.

This mode is available for topic sessions only.

This mode and behavior are proprietary extensions,
specific to TIBCO EMS.

TIBCO Enterprise Message Service .NET Reference

148 |Chapter 10 Session

Session.Close

Method
Declaration void Close();
Purpose Close a session; reclaim resources.

Remarks Closing a session automatically closes its consumers (except for durable
subscribers), producers and browsers.

Blocking If any message listener or receive call associated with the session is processing a
message when the program calls this method, all facilities of the connection and
its sessions remain available to those listeners until they return. In the meantime,
this method blocks until that processing completes—that is, until all message
listeners and receive calls have returned.

Transactions Closing a session rolls back the open transaction in the session.

TIBCO Enterprise Message Service .NET Reference

Session.Commit | 149

Session.Commit

Method
Declaration
Purpose

Remarks

Throws

virtual void Commit();
Commit the open transaction.

A session (with transaction semantics) always has exactly one open transaction.
Message operations associated with the session become part of that transaction.
This call commits all the messages within the transaction, and releases any locks.
Then it opens a new transaction.

EMSException on page 230

TransactionRolledBackException on page 251
IllegalStateException on page 236

TIBCO Enterprise Message Service .NET Reference

150 |Chapter 10 Session

Session.CreateBrowser
Method

Declaration QueueBrowser CreateBrowser(
Queue queue,
string messageSelector);

QueueBrowser CreateBrowser(
Queue queue);

Purpose Create a queue browser.

Parameter Description

queue Browse this queue.

messageSelector When present, the browser presents only messages that match this selector;
see Message Selectors on page 20.

When absent, null, or the empty string, the browser views all messages in the
queue.

Throws EMSException on page 230
InvalidDestinationException on page 238
InvalidSelectorException on page 240

See Also Queue on page 66
QueueBrowser on page 174

TIBCO Enterprise Message Service .NET Reference

Session.CreateBytesMessage | 151

Session.CreateBytesMessage
Method

Declaration BytesMessage CreateBytesMessage();
Purpose Create a byte array message.

See Also BytesMessage on page 36

TIBCO Enterprise Message Service .NET Reference

152 |Chapter 10 Session

Session.CreateConsumer
Method

Declaration MessageConsumer CreateConsumer(
Destination dest,
string messageSelector,
bool nolocal);

MessageConsumer CreateConsumer(
Destination dest,
string messageSelector);

MessageConsumer CreateConsumer(
Destination dest);

Purpose Create a message consumer.

Parameter Description

dest Create a consumer for this destination. The argument may be any destination
(queue or topic).

messageSelector When present, the server filters messages using this selector, so the consumer
receives only matching messages; see Message Selectors on page 20.

When absent, null, or the empty string, the consumer receives messages
without filtering.

noLocal When true, the server filters messages so the consumer does not receive
messages that originate locally—that is, messages sent through the same
connection.

When absent or false, the consumer receives messages with local origin.

Throws EMSException on page 230
IllegalStateException on page 236
InvalidDestinationException on page 238
InvalidSelectorException on page 240

See Also Destination on page 65

TIBCO Enterprise Message Service .NET Reference

Session.CreateDurableSubscriber

Session.CreateDurableSubscriber
Method

Declaration TopicSubscriber CreateDurableSubscriber(
Topic topic,
string name,
string messageSelector,
bool nolocal);

TopicSubscriber CreateDurableSubscriber(

Topic topic,
string name);

Purpose Create a durable topic subscriber.

Parameter Description

topic Create a durable subscriber for this topic (which cannot be a
TemporaryTopic).

name This unique name lets the server associate the subscriber with a subscription.

messageSelector When present, the server filters messages using this selector, so the subscriber
receives only matching messages; see Message Selectors on page 20.

When absent, null, or the empty string, the subscriber receives messages
without filtering.

noLocal When true, the server filters messages so the subscriber does not receive
messages that originate locally—that is, messages sent through the same
connection.

When absent or false, the consumer receives messages with local origin.

Remarks The server associates a durable subscription with at most one subscriber object at
a time. When a subscriber object exists, the subscription is active, and the server
delivers messages to it; when no subscriber object exists, the subscription is
inactive.

Durable subscriptions guarantee message delivery across periods during which
the subscriber is inactive. The server retains unacknowledged messages until the
subscriber acknowledges them, or until the messages expire.

Subscription Continuity across inactive periods uses two data items from the client:
Continuit I .
MUY« Subscription Name a parameter of this method

e Client ID an optional property of the Connection (used only when supplied)

TIBCO Enterprise Message Service .NET Reference

153

154

Chapter 10 Session

Matching
Client ID

Changing Topic
or Selector

Throws

See Also

The server uses one or both of these two items to match a subscriber object with
its subscription. If a matching subscription exists, and it is inactive, then the
server associates it with the subscriber (and the subscription becomes active). The
server delivers unacknowledged messages to the subscriber.

If a matching subscription exists, but it is already active, this method throws
EMSException.

If a matching subscription to the topic does not yet exist, the server creates one.

e If the Connection’s client ID is non-null when a session creates a durable
subscription, then only sessions of a connection with the same client ID can
attach to that subscription.

e [f the Connection’s client ID is null when a session creates a durable
subscription, then any session can attach to that subscription (to receive its
messages).

Notice that the server does not use the topic and message selector arguments to
match a subscriber to an existing subscription. As a result, client programs can
change a subscription by altering either or both of these arguments. The effect is
equivalent to deleting the existing subscription (from the server) and creating a
new one (albeit with the same client ID and subscription name).

EMSException on page 230
IllegalStateException on page 236
InvalidDestinationException on page 238
InvalidSelectorException on page 240

Topic on page 72
Connection on page 114

TIBCO Enterprise Message Service .NET Reference

Session.CreateMapMessage | 155

Session.CreateMapMessage
Method

Declaration MapMessage CreateMapMessage();
Purpose Create a map message.

See Also MapMessage on page 44

TIBCO Enterprise Message Service .NET Reference

156 |Chapter 10 Session

Session.CreateObjectMessage
Method

Declaration ObjectMessage CreateObjectMessage(
object obj);

ObjectMessage CreateObjectMessage();

Purpose Create an object message.

Parameter Description

obj When present, use this object as data in the new message.

See Also ObjectMessage on page 50

TIBCO Enterprise Message Service .NET Reference

Session.CreateProducer | 157

Session.CreateProducer
Method

Declaration MessageProducer CreateProducer(
Destination dest);

Purpose Create a message producer.

Parameter Description

dest When non-null, the producer sends messages to this destination.

When null, the client program must specify the destination for each message
individually.

Throws EMSException on page 230
InvalidDestinationException on page 238

See Also MessageProducer on page 90

TIBCO Enterprise Message Service .NET Reference

158 |Chapter 10 Session

Session.CreateQueue
Method

Declaration Queue CreateQueue(
string queueName);

Purpose Create a queue.
Remarks If the named queue already exists at the server, then this method returns that
queue. (That queue can be either static or dynamic.)

If the named queue does not yet exist at the server, and the server allows dynamic
queues, then this method creates a dynamic queue.

Dynamic destinations are provider-specific, so programs that use them might not
be portable to other providers.

Parameter Description

queueName Get or create the queue with this name.

See Also Queue on page 66

TIBCO Enterprise Message Service .NET Reference

Session.CreateStreamMessage | 159

Session.CreateStreamMessage
Method

Declaration StreamMessage CreateStreamMessage();
Purpose Create a stream message.

See Also StreamMessage on page 52

TIBCO Enterprise Message Service .NET Reference

160 |Chapter 10 Session

Session.CreateTemporaryQueue

Method
Declaration TemporaryQueue CreateTemporaryQueue();
Purpose Create a temporary queue.
Remarks A temporary queue lasts no longer than the connection. That is, when the
connection is closed or broken, the server deletes temporary queues associated

with the connection.

See Also TemporaryQueue on page 68

TIBCO Enterprise Message Service .NET Reference

Session.CreateTemporaryTopic | 161

Session.CreateTemporaryTopic
Method

Declaration TemporaryTopic CreateTemporaryTopic();
Purpose Create a temporary topic.
Remarks A temporary topic lasts no longer than the connection. That is, when the
connection is closed or broken, the server deletes temporary topic associated with

the connection.

See Also TemporaryTopic on page 70

TIBCO Enterprise Message Service .NET Reference

162 |Chapter 10 Session

Session.CreateTextMessage
Method

Declaration TextMessage CreateTextMessage(
string text);

TextMessage CreateTextMessage();

Purpose Create a text message.

Parameter Description

text When present, use this string as data in the new message.

See Also TextMessage on page 59

TIBCO Enterprise Message Service .NET Reference

Session.CreateTopic | 163

Session.CreateTopic
Method

Declaration Topic CreateTopic(
string topicName);

Purpose Create a topic.
Remarks If the named topic already exists at the server, then this method returns that topic.
(That topic can be either static or dynamic.)

If the named topic does not yet exist at the server, and the server allows dynamic
topics, then this method creates a dynamic topic.

Dynamic destinations are provider-specific, so programs that use them might not
be portable to other providers.

Parameter Description

topicName Get or create the topic with this name.

See Also Topic on page 72

TIBCO Enterprise Message Service .NET Reference

164 |Chapter 10 Session

Session.Recover

Method
Declaration
Purpose

Remarks

Operation

Throws

void Recover();
Recover from undetermined state during message processing.

Exceptions during message processing can sometimes leave a program in an
ambiguous state. For example, some messages might be partially processed. This
method lets a program return to an unambiguous state—the point within the
message stream when the program last acknowledged the receipt of inbound
messages. Programs can then review the messages delivered since that point (they
are marked as redelivered), and resolve ambiguities about message processing.

Programs can also use this method to resolve similar ambiguities after a
Connection stops delivering messages, and then starts again.

This method requests that the server do this sequence of actions:

1. Stop message delivery within the session.

2. Mark as redelivered, any messages that the server has attempted to deliver to
the session, but for which it has not received acknowledgement (that is,
messages for which processing state is ambiguous).

According to the JMS specification, the server need not redeliver messages in
the same order as it first delivered them.

3. Restart message delivery (including messages marked as redelivered in step 2).
When a session has transactional semantics, this method throws

IllegalStateException (commit and rollback are more appropriate for
transactions).

EMSException on page 230
IllegalStateException on page 236

TIBCO Enterprise Message Service .NET Reference

Session.Rollback | 165

Session.Rollback
Method

Declaration virtual void Rollback();
Purpose Roll back messages in the current transaction.

Remarks When a session does not have transactional semantics, this method throws
TIllegalStateException.

Throws EMSException on page 230
IllegalStateException on page 236

TIBCO Enterprise Message Service .NET Reference

166 |Chapter 10 Session

Session.Run

Method

Obsolete

Declaration void Run();

Purpose Obsolete. Do not call.

TIBCO Enterprise Message Service .NET Reference

Session.Unsubscribe

Session.Unsubscribe

Method

Declaration

Purpose

Remarks

void Unsubscribe(
string name);

Unsubscribe a durable topic subscription.

This method deletes the subscription from the server.

It is illegal to delete an active subscription—that is, while a MessageConsumer or
TopicSubscriber exists. Attempting to do so results in EMSException.

It is illegal to delete a subscription while one of its messages is either
unacknowledged, or uncommitted (in the current transaction). Attempting to do
so results in EMSException.

If the session is closed, this method throws I1legalStateException.

Parameter Description

name This name lets the server locate the subscription.
Throws EMSException on page 230
IllegalStateException on page 236
InvalidDestinationException on page 238
See Also MessageConsumer on page 76

TopicSubscriber on page 82
Topic on page 72
Session.CreateDurableSubscriber on page 153

TIBCO Enterprise Message Service .NET Reference

167

168 |Chapter 10 Session

SessionMode

Enumeration

Declaration enum SessionMode

Purpose Enumerate constants associated with sessions.

(Sheet 1 of 2)

Members Description

SessionTransacted The IsTransacted property has this value if the
session uses transaction semantics.

Acknowledge Modes

AutoAcknowledge In this mode, the session automatically
acknowledges a message when message processing
is finished—that is, in either of these methods
returns successfully:

e synchronous Receive call
e asynchronous listener handler
ClientAcknowledge In this mode, the client program acknowledges

receipt by calling Message . Acknowledge on page 27.
Each call acknowledges all messages received so far.

DupsOkAcknowledge As with AutoAcknowledge, the session
automatically acknowledges messages. However, it
may do so lazily. Lazy means that the provider client
library can delay transferring the acknowledgement
to the server until a convenient time; meanwhile the
server might redeliver the message. Lazy
acknowledgement can reduce session overhead.

ExplicitClientAcknowledge As with ClientAcknowledge, the client program
acknowledges receipt by calling
Message . Acknowledge on page 27. However, each
call acknowledges only the individual message. The
client may acknowledge messages in any order.

This mode and behavior are proprietary extensions,
specific to TIBCO EMS.

TIBCO Enterprise Message Service .NET Reference

SessionMode | 169

(Sheet 2 of 2)

Members Description

ExplicitClientDupsOkAcknowledge In this mode, the client program lazily acknowledges
only the individual message, by calling
Message.Acknowledge on page 27. The client may
acknowledge messages in any order.

Lazy means that the provider client library can delay
transferring the acknowledgement to the server until
a convenient time; meanwhile the server might
redeliver the message.

This mode and behavior are proprietary extensions,
specific to TIBCO EMS.

NoAcknowledge In this mode, messages do not require
acknowledgement (which reduces message
overhead). The server never redelivers messages.

This mode is available for topic sessions only.

This mode and behavior are proprietary extensions,
specific to TIBCO EMS.

TIBCO Enterprise Message Service .NET Reference

170 |Chapter 10 Session

QueueSession

Class
Declaration class QueueSession : Session
Purpose Session restricted to queues.

Remarks Use this class with QueueRequestor objects.

Otherwise, when coding new programs, use the more general class, Session on
page 142. Nonetheless, for backward compatibility, this class also supports
existing programs that use it (rather than generic sessions).

See Also QueueRequestor on page 104

TIBCO Enterprise Message Service .NET Reference

TopicSession | 171

TopicSession
Class

Declaration class TopicSession : Session
Purpose Session restricted to topics.

Remarks Use this class with TopicRequestor objects.

Otherwise, when coding new programs, use the more general class, Session on
page 142. Nonetheless, for backward compatibility, this class also supports
existing programs that use it (rather than generic sessions).

See Also TopicRequestor on page 108

TIBCO Enterprise Message Service .NET Reference

172 | Chapter 10 Session

TIBCO Enterprise Message Service .NET Reference

173

Chapter 11 Queue Browser

Queue browsers let client programs examine the messages on a queue without
removing them from the queue.

Topics

* QueueBrowser, page 174

TIBCO Enterprise Message Service .NET Reference

174 | Chapter 11 Queue Browser

QueueBrowser
Class

Declaration class QueueBrowser : IEnumerator
Purpose Enumerate the messages in a queue without consuming them.

Remarks A browser is a dynamic enumerator of the queue (not a static snapshot). The
queue is at the server, and its contents change as message arrive and consumers
remove them. Meanwhile, while the browser is at the client. The method
QueueBrowser.MoveNext asks the server for the next message after Current—
that is, the next message that is still in the queue.

The browser can enumerate messages in a queue, or a subset filtered by a message
selector.

Sessions serve as factories for queue browsers; see Session.CreateBrowser on
page 150.

Member Description
Properties
Current object {get;}
This property presents the current message in the browser’s enumeration,
but accessing the property does not consume that message.
The method QueueBrowser.MoveNext advances the current message.
MessageSelector string {get;}
The browser’s message selector expression filters the messages that the
browser presents.
Queue Queue {get;}

The queue that this browser scans.

(Sheet 1 of 2)
Method Description Page

QueueBrowser.Close Close the browser; reclaim resources. 176

TIBCO Enterprise Message Service .NET Reference

QueueBrowser | 175

(Sheet 2 of 2)
Method Description Page
QueueBrowser.GetEnumerator Get an enumerator of messages in the queue. 177
QueueBrowser.MoveNext Advance the browser’s enumeration to the next 178
message.
QueueBrowser.Reset Reset the browser to the location before the first 179
message.

See Also Session.CreateBrowser on page 150

TIBCO Enterprise Message Service .NET Reference

176 | Chapter 11 Queue Browser

QueueBrowser.Close

Method
Declaration void Close();

Purpose Close the browser; reclaim resources.

TIBCO Enterprise Message Service .NET Reference

QueueBrowser.GetEnumerator | 177

QueueBrowser.GetEnumerator
Method

Declaration IEnumerator GetEnumerator();
Purpose Get an enumerator of messages in the queue.

Remarks This method returns the browser object—which is itself the enumerator.

TIBCO Enterprise Message Service .NET Reference

178 | Chapter 11 Queue Browser

QueueBrowser.MoveNext

Method
Declaration bool MoveNext();
Purpose Advance the browser’s enumeration to the next message.

Remarks A browser is a dynamic enumerator of the queue (not a static snapshot). The
queue is at the server, and its contents change as message arrive and consumers
remove them. Meanwhile, while the browser is at the client. This method asks the
server for the next message after Current—that is, the next message that is still in
the queue.

Returns true if another message exists; the Current property subsequently
presents the next message.

Returns false otherwise.

After creating a browser, programs must first call this method to examine the first
message.

TIBCO Enterprise Message Service .NET Reference

QueueBrowser.Reset | 179

QueueBrowser.Reset
Method

Declaration void Reset();

Purpose Reset the browser to the location before the first message.

TIBCO Enterprise Message Service .NET Reference

180 | Chapter 11 Queue Browser

TIBCO Enterprise Message Service .NET Reference

181

Chapter 12 Name Server Lookup

Lookup context objects find named objects (such as connection factories and
destinations) in the name repository. (The EMS server, tibemsd, provides the
name repository service).

Topics

* LookupContext, page 182

TIBCO Enterprise Message Service .NET Reference

182 | Chapter 12 Name Server Lookup

LookupContext
Class

Declaration class LookupContext
Purpose Retrieve objects from the server’s naming directory.

Remarks The context object establishes communication with the EMS server, authenticates
the user, and submits name queries.

Example 3 Naming Server Lookup

Hashtable env = new Hashtable();
env.Add(LookupContext.PROVIDER_URL, "tibjmsnaming://localhost:7222");
env.Add(LookupContext.SECURITY_PRINCIPAL", "myUserName");
env.Add(LookupContext.SECURITY_CREDENTIALS", "myPassword");
try {

LookupContext searcher = new LookupContext(env);

TIBCO.EMS.Queue queue = (TIBCO.EMS.Queue)searcher.Lookup("theQueueName");

} catch (NamingException)

(Sheet 1 of 2)

Member Description

Properties
Settings System.Collections.Hashtable {get;}

Programs can get a copy of the context’s current settings.
Fields

Programs use these constants as names of context settings (in argument hashtables or individually).

PROVIDER_URL string
URL of the naming server (EMS server).

SECURITY_CREDENTTIALS string

User password of the client program.

SECURITY_PRINCIPAL string

User name of the client program.

TIBCO Enterprise Message Service .NET Reference

LookupContext | 183

(Sheet 2 of 2)
Member Description
URL_LIST string
ArrayList of URLs of naming servers (EMS servers).
This property lets programs specify URLs as an ArrayList, rather than
as a string (as with PROVIDER_URL).
URL_SEPARATOR string
Syntactic separator between URLs in the PROVIDER_URL.
Method Description Page
LookupContext Constructor. 184
LookupContext.AddSettings Add or change context settings. 185
LookupContext . Lookup Lookup an object in the naming server. 186
LookupContext.RemoveSettings Remove a context setting. 187

TIBCO Enterprise Message Service .NET Reference

184 | Chapter 12 Name Server Lookup

LookupContext

Constructor

Declaration LookupContext (
Hashtable prop);

LookupContext();
Purpose Create a new lookup context object.

Remarks The first constructor sets properties of the new context object.

The second constructor creates a context without property settings.

Parameter Description

prop Set all the name-value pairs contained in this hash table.

TIBCO Enterprise Message Service .NET Reference

LookupContext.AddSettings

LookupContext.AddSettings
Method

Declaration virtual object AddSettings(
string propName,
object propValue);

virtual void AddSettings(
Hashtable prop);

Purpose Add or change context settings.
Remarks The first method sets one property. If the property was previously set, the method

modifies it, and returns the old value.

The second method sets several properties with one call (like the constructor for
context objects).

Parameter Description

propName Set this single property.

For property names, see Fields on page 182.

propValue Set the single property to this value.

prop Set all the name-value pairs contained in this hash table.

TIBCO Enterprise Message Service .NET Reference

185

186 | Chapter 12 Name Server Lookup

LookupContext.Lookup
Method

Declaration virtual object Lookup(
string name);

Purpose Lookup an object in the naming server.

Remarks Returns the named object, if the server finds it.

If the server does not find the object, this method throws NamingException.

Parameter Description

name Lookup this name.

Throws AuthenticationException on page 232
NamingException on page 246
ServiceUnavailableException on page 249

TIBCO Enterprise Message Service .NET Reference

LookupContext.RemoveSettings | 187

LookupContext.RemoveSettings
Method

Declaration virtual object RemoveSettings(
string propName);

Purpose Remove a context setting.

Parameter Description

propName Remove this property.

For property names, see Fields on page 182.

TIBCO Enterprise Message Service .NET Reference

188 | Chapter 12 Name Server Lookup

TIBCO Enterprise Message Service .NET Reference

189

Chapter 13 Utilities

This chapter presents classes and interfaces that define constants and utility
methods.

Topics

* DeliveryMode, page 190

e [EMSSerialziable, page 191

* MessageDeliveryMode, page 194
e Tibems, page 195

TIBCO Enterprise Message Service .NET Reference

190 |Chapter 13 Utilities

DeliveryMode
Class

Declaration class DeliveryMode
Purpose Backward compatibility. Define delivery mode constants as integers.

Remarks The class MessageDeliveryMode defines a parallel set of constants as .NET
enumerated values (instead of ordinary integers). We recommend the
enumeration over these ordinary integer values, because it enables .NET to do
stronger type checking at compile time, which can enhance program reliability.

Fields
NON_PERSISTENT int

Non-persistent delivery.
PERSISTENT int

Persistent delivery.
RELIABLE_DELIVERY int

Reliable delivery mode is a TIBCO proprietary extension
that offers increased performance of the message
producers. See also Reliable Message Delivery on page 70
in TIBCO Enterprise Message Service User’s Guide.

TIBCO Enterprise Message Service .NET Reference

IEMSSerialziable

IEMSSerialziable

Interface
Declaration interface IEMSSerialzable
Purpose Customize serialization and deserialization of objects.

.NET This interface is available only in .NET Compact Framework. Programmers can
Compact use it to allow otherwise excluded objects within an ObjectMessage.
Framework

Remarks ~ When an object class implements this interface, it can be serialized within an
ObjectMessage.

To implement this interface for a class, define the methods listed below and a
constructor that does not require any arguments.

Method Description Page
IEMSSerialziable.Deserialize Deserialize a data stream to reconstruct an object. ~ 192
IEMSSerialziable.Serialize Serialize an object. 193

See Also ObjectMessage on page 50

TIBCO Enterprise Message Service .NET Reference

191

192 |Chapter 13 Utilities

IEMSSerialziable.Deserialize
Method

Declaration void Deserialize(
System.IO.Stream stream);

Purpose Deserialize a data stream to reconstruct an object.

Parameter Description

stream Deserialize the data from this stream to reconstruct an object.

Remarks ~ When this method is called, the stream already contains context information. That
context information resides before the write position of the stream when this
method is called (call it initWritePos). Your implementation of this method
must not modify that context information, nor reset the stream’s write pointer to a
position before initwWritePos.

Similarly, your implementation must not close the stream.

TIBCO Enterprise Message Service .NET Reference

IEMSSerialziable.Serialize | 193

IEMSSerialziable.Serialize
Method

Declaration void Serialize(
System.IO.Stream stream);

Purpose Serialize an object.

Parameter Description

stream Serialize the object’s data to this stream.

Remarks ~ When this method is called, the stream already contains context information. That
context information resides before the write position of the stream when this
method is called (call it initWritePos). Your implementation of this method
must not modify that context information, nor reset the stream’s write pointer to a
position before initwWritePos.

Similarly, your implementation must not close the stream.

TIBCO Enterprise Message Service .NET Reference

194 | Chapter 13 Utilities

MessageDeliveryMode
Class

Declaration enum MessageDeliveryMode
Purpose Define enumerated delivery mode constants.
Remarks The class DeliveryMode defines a parallel set of constants as ordinary integers.

However, we recommend this enumeration, because it enables .NET to do
stronger type checking at compile time, which can enhance program reliability.

Fields

NonPersistent Non-persistent delivery.

Persistent Persistent delivery.

ReliableDelivery Reliable delivery mode is a TIBCO proprietary extension

that offers increased performance of the message
producers. See also Reliable Message Delivery on page 70
in TIBCO Enterprise Message Service User’s Guide.

TIBCO Enterprise Message Service .NET Reference

Tibems

Tibems | 195

Class

Declaration class Tibems

Purpose Define constants and utility methods specific to EMS.

(Sheet 1 of 3)

Constant Description

Connection-Related Fields (Constants)

Programs can use these constants as names of settings in the hashtable argument to
ConnectionFactory.CreateConnection. They govern the behavior of the resulting connections

that the factory creates.

DEFAULT_ FACTORY_PASSWORD

string

Defines the name of a ConnectionFactory property. That
property specifies a default user password for the
connections that the factory creates.

If the client does not supply a password, the connection
factory object uses this password as a default when
creating a connection. See also
ConnectionFactory.CreateConnection on page 135

DEFAULT_FACTORY_USERNAME

string

Defines the name of a ConnectionFactory property. That
property specifies a default username for the connections
that the factory creates.

If the client does not supply a username, the connection
factory object uses this username as a default when
creating a connection. See also
ConnectionFactory.CreateConnection on page 135

FACTORY_LOAD_BALANCE_METRIC

string

This field defines the name of a provider-specific
ConnectionFactory property. That property governs the
assignment of client connections among a set of
load-balanced servers.

For property values, see FactoryLoadBalanceMetric on
page 136.

TIBCO Enterprise Message Service .NET Reference

196 |Chapter 13 Utilities

(Sheet 2 of 3)

Constant Description

Message-Related Fields (Constants)

Programs can use these constants as names of message properties.

JMS_TIBCO_CM_PUBLISHER string

Defines the name of a provider-specific message property.
An imported message with that property is an RVCM
message. The value of that property is the RVCM sender
name. See also JMS_TIBCO_CM_PUBLISHER on page 17.

JMS_TIBCO_CM_SEQUENCE string

Defines the name of a provider-specific message property.
An imported message with that property is an RVCM
message. The value of that property is the RVCM sequence
number. See also JMS_TIBCO_CM_SEQUENCE on page 17.

JMS_TIBCO_COMPRESS string

Defines the name of a provider-specific message property.
EMS .NET does not support compression. See also
JMS_TIBCO_COMPRESS on page 17.

JMS_TIBCO_DISABLE_SENDER string

Defines the name of a provider-specific message property.
Programs may set that property before sending a message
to request that the server omit the sender name from the
message. See also JMS_TIBCO_DISABLE_SENDER on

page 18.

JMS_TIBCO_IMPORTED string

Defines the name of a provider-specific message property.
The server sets that property on messages it imports from
external message services, such as TIBCO Rendezvous or
TIBCO SmartSockets. See also JMS_TIBCO_IMPORTED on
page 18.

JMS_TIBCO_MSG_EXT string

Defines the name of a provider-specific message property.
When that property is set, the message can use
TIBCO-specific extensions. See also JMS_TIBCO_MSG_EXT
on page 18.

TIBCO Enterprise Message Service .NET Reference

Tibems | 197

(Sheet 3 of 3)

Constant Description

JMS_TIBCO_MSG_TRACE string

Defines the name of a provider-specific message property.
Programs may set that property before sending a message
to request trace data at significant events during the
lifetime of the message. See also JMS_TIBCO_MSG_TRACE
on page 18.

JMS_TIBCO_PRESERVE_UNDELIVERED string

Defines the name of a provider-specific message property.
Programs may set that property before sending a message
to request that the server hold it in a special queue if the
server cannot deliver it. See also
JMS_TIBCO_PRESERVE_UNDELIVERED on page 18.

JMS_TIBCO_SENDER string

Defines the name of a provider-specific message property.
When a destination requests it, the server stores the
username of the message producer in that property. See
also JMS_TIBCO_SENDER on page 18.

JMS_TIBCO_SS_SENDER string

Defines the name of a provider-specific message property.
The server sets that property when importing a message
from TIBCO SmartSockets; its value is the SmartSockets
sender name. See also JMS_TIBCO_SS_SENDER on page 18.

(Sheet 1 of 3)
Method Description Page

Tibems.CalculateMessageSize Returns the total size (in bytes) of a messagein 200
wire format.

Tibems.CreateFromBytes Create a message from a byte array. 201

Tibems.GetAllowCloseInCallback Determine whether client callbacks may call 202
close methods.

Tibems.GetAsBytes Copy a message into a byte array. 203

TIBCO Enterprise Message Service .NET Reference

198 |Chapter 13 Utilities

(Sheet 2 of 3)

Method Description Page

Tibems.GetConnectAttempts Return the connection attempts setting. 204

Tibems.GetEncoding Return the global character encoding for 205
messages.

Tibems.GetExceptionOnFISwitch Return the fault tolerance exception setting. 206

Tibems.GetMessageEncoding Return the character encoding for an 207
individual message.

Tibems.GetMessageSize Return the size of a wire format message—or 208

(and related methods) its body, header or properties portions.

Tibems.GetPingInterval Return the interval at which the client tests 209
network connectivity.

Tibems.GetProperty Return a property value. 210

Tibems.GetReconnectAttempts Return the reconnection attempts setting. 212

Tibems.GetSessionDispatcherDaemon Return the dispatcher thread setting. 213

Tibems.GetSocketReceiveBufferSize Return the size of socket receive buffers. 214

Tibems.GetSocketSendBufferSize Return the size of socket send buffers. 215

Tibems.MakeWriteable Make a message writeable. 216

Tibems.SetAllowCloseInCallback Override a JMS requirement so client callbacks 217
may call close methods.

Tibems.SetConnectAttempts Modify the connection attempts setting. 218

Tibems.SetEncoding Set the global character encoding for messages. 219

Tibems.SetExceptionOnFTSwitch Modify the fault tolerance exception setting. 220

Tibems.SetMessageEncoding Set the character encoding for an individual 221
message.

Tibems.SetPingInterval Set the interval at which the client tests 222
network connectivity.

Tibems.SetProperty Modify a property value. 223

TIBCO Enterprise Message Service .NET Reference

Tibems | 199

(Sheet 3 of 3)
Method Description Page
Tibems.SetReconnectAttempts Modify the reconnection attempts setting. 225
Tibems.SetSessionDispatcherDaemon Set the dispatcher thread setting. 226
Tibems.SetSocketReceiveBufferSize Set the size of socket receive buffers. 227
Tibems.SetSocketSendBufferSize Set the size of socket send buffers. 228

TIBCO Enterprise Message Service .NET Reference

200 |Chapter 13 Utilities

Tibems.CalculateMessageSize
Method

Declaration static int CalculateMessageSize(
Message msg);

Purpose Returns the total size (in bytes) of a message in wire format.

Remarks The total size includes headers, properties and body.

This method re-measures the message, and caches the results; contrast
Tibems.GetMessageSize.

This method might consume process storage, and might involve disk I/O—with
associated performance penalties.

Parameter Description

msg Compute the size of this message.

See Also Tibems.GetMessageSize on page 208

TIBCO Enterprise Message Service .NET Reference

Tibems.CreateFromBytes | 201

Tibems.CreateFromBytes

Method

Declaration

Purpose

Remarks

See Also

static Message CreateFromBytes(
byte[] bytes);

Create a message from a byte array.

Parameter Description

bytes Fill the new message with this byte array.

This byte array must be the result of previously calling
Tibems.GetAsBytes.

The newly created message is read-only; to enable modification without erasing
the content, call Tibems .MakeWriteable.

Tibems.GetAsBytes on page 203
Tibems.MakeWriteable on page 216

TIBCO Enterprise Message Service .NET Reference

202 |Chapter 13 Utilities

Tibems.GetAllowCloselnCallback

Method
Declaration
Purpose

Remarks

Obsolete

See Also

static bool GetAllowCloseInCallback();
Determine whether client callbacks may call close methods.

According to the JMS specification, close methods (that is,
MessageConsumer.Close, Session.Close, Connection. Close) cannot return
while any message callbacks (that is, EMSMessageHandler,
IMessageListener.OnMessage) are running. As a result, a message callback
must not call a close method, lest it cause a deadlock.

Tibems.SetAllowCloseInCallback explicitly overrides this JMS requirement,
permitting callbacks to call close without deadlock (that is, embedded close calls
do not wait for callbacks to return).

This method replaces the deprecated method GetAallowCallbackInClose.

Tibems.SetAllowCloseInCallback on page 217

TIBCO Enterprise Message Service .NET Reference

Tibems.GetAsBytes | 203

Tibems.GetAsBytes
Method

Declaration static byte[] GetAsBytes(
Message message);

Purpose Copy a message into a byte array.

Remarks The byte array includes the message headers, properties and body.

Parameter Description

message Fill the byte array with the content of this message.

See Also Tibems.CreateFromBytes on page 201

TIBCO Enterprise Message Service .NET Reference

204 |Chapter 13 Utilities

Tibems.GetConnectAttempts

Method
Declaration static string GetConnectAttempts();
Purpose Return the connection attempts setting.
Remarks This setting governs all client Connection objects as they attempt to connect to

the server. Its value is a string of the form attempts or attempts , delay:

® attempts limits the number of times that the connection object attempts to
establish a connection to the server. When this property is absent, the default
value is 2. The minimum value is 1.

® delay is the time (in milliseconds) between connection attempts. When absent,
the default value is 500. The minimum value is 250.

This method returns the string argument to Tibems . SetConnectAttempts—not
the numeric value of the setting. If the client has not set a value, this method

returns the null string.

See Also Tibems.SetConnectAttempts on page 218

TIBCO Enterprise Message Service .NET Reference

Tibems.GetEncoding | 205

Tibems.GetEncoding

Method
Declaration
Purpose

Remarks

See Also

static string GetEncoding();
Return the global character encoding for messages.

If the global encoding has not been set, this method returns null.

Programs can override the global encoding for individual messages. When
neither a global nor an individual message encoding has been set, then EMS
encodes the strings of an outbound message using the default UTF-8 encoding.

This encoding applies to all strings in message bodies (names and values), and
properties (names and values). It does not apply to header names nor values. The
methods BytesMessage.ReadUTF and BytesMessage .WriteUTF are exempt from
global and individual encoding settings.

BytesMessage—Read on page 37
BytesMessage—Write on page 40
Tibems.SetEncoding on page 219
Tibems.GetMessageEncoding on page 207
Tibems.SetMessageEncoding on page 221

TIBCO Enterprise Message Service .NET Reference

206 |Chapter 13 Utilities

Tibems.GetExceptionOnFTSwitch
Method

Declaration static bool GetExceptionOnFTSwitch();
Purpose Return the fault tolerance exception setting.

Remarks This setting determines exception behavior when the client successfully switches
to a different server (fault-tolerant failover).

e When true, the connection’s ExceptionListener catches an EMSException,
which contains the name of the new server.

e When false, fault-tolerant failover does not trigger an exception in the client.

See Also IExceptionListener on page 129
Tibems.SetExceptionOnFTSwitch on page 220

TIBCO Enterprise Message Service .NET Reference

Tibems.GetMessageEncoding

Tibems.GetMessageEncoding

Method

Declaration

Purpose

Remarks

static string GetMessageEncoding(
Message message);

Return the character encoding for an individual message.

If the encoding has not been set for the individual message, this method returns
null.

This encoding for an individual message overrides the global encoding. When
neither a global nor an individual encoding has been set, then EMS encodes the
strings of an outbound message using the default UTF-8 encoding.

This encoding applies to all strings in message bodies (names and values), and
properties (names and values). It does not apply to header names nor values. The
methods BytesMessage.ReadUTF and BytesMessage . WriteUTF are exempt from
global and individual encoding settings.

Parameter Description

message

Get the encoding for this message.

See Also

BytesMessage—Read on page 37
BytesMessage—Write on page 40
Tibems.GetEncoding on page 205
Tibems.SetEncoding on page 219
Tibems.SetMessageEncoding on page 221

TIBCO Enterprise Message Service .NET Reference

207

208 |Chapter 13 Utilities

Tibems.GetMessageSize

Method

Declaration

Purpose

Remarks

static int GetMessageSize(
Message msg);

static int GetMessageBodySize(
Message msg);

static int GetMessageHeadersSize(
Message msg);

static int GetMessagePropertiesSize(
Message msg);

Return the size of a wire format message—or its body, header or properties
portions.

These four methods return cached values for the size of a message or its parts.

The sizes are implicitly measured and cached when an inbound message arrives
at the client, and when the client sends an outbound message. If the client
modifies a message, or creates a message but never sends it, then these methods
could yield incorrect cached values. To explicitly force a new measurement and
cache its results, call Tibems.CalculateMessageSize; then these methods yield
correct values.

GetMessageSize returns the total size of a message—that is, the number of bytes
that traverse the network when the client sends the message. This total is slightly
larger than the sum of its three constituent parts, because it includes additional
control information. Furthermore, the server adds its own control information as
well, so the size of message as measured by receivers is slightly larger than its size
as measured by the sender.

Parameter Description

msg

Return the cached size of this message, or one of its parts.

See Also

Tibems.CalculateMessageSize on page 200

TIBCO Enterprise Message Service .NET Reference

Tibems.GetPinglInterval | 209

Tibems.GetPinginterval
Method

Declaration static int GetPingInterval();
Purpose Return the interval at which the client tests network connectivity.
Remarks Clients test network connectivity by sending ping requests to the server at regular
intervals. This method returns that interval (in seconds). Zero is a special value

that disables ping testing.

See Also Tibems.SetPingInterval on page 222

TIBCO Enterprise Message Service .NET Reference

210 |Chapter 13 Utilities

Tibems.GetProperty
Method

Declaration static object GetProperty(
string key);

Purpose Return a property value.

Remarks If the property is not set, this method returns null.

In .NET, methods exist to get and set the properties. GetProperty provides an
alternate way to get property values, which is consistent with the EMS Java API
(for easy porting to .NET).

Parameter Description

key Return the value associated with this property name.

You may supply any of the constants listed in the table below. The constants
are defined as static fields of Tibems. The values of those constants are the
actual property names.

(Sheet 1 of 2)

Property Constant Corresponding Methods

PROP_SOCKET_RECEIVE_SIZE Tibems.GetSocketReceiveBufferSize on page 214

Tibems.SetSocketReceiveBufferSize on page 227

PROP_SOCKET_SEND_SIZE Tibems.GetSocketSendBufferSize on page 215

Tibems.SetSocketSendBufferSize on page 228

PROP_CONNECTION_ATTEMPTS Tibems.GetConnectAttempts on page 204

Tibems.SetConnectAttempts

PROP_RECONNECTION_ATTEMPTS Tibems.GetReconnectAttempts on page 212

Tibems.SetReconnectAttempts on page 225

PROP_CLOSE_IN_CALLBACK Tibems.GetAllowCloseInCallback on page 202

Tibems.SetAllowCloseInCallback on page 217

TIBCO Enterprise Message Service .NET Reference

Tibems.GetProperty | 211

(Sheet 2 of 2)

Property Constant Corresponding Methods

PROP_PING_INTERVAL Tibems.GetPingInterval on page 209
Tibems.SetPingInterval on page 222

PROP_FT_SWITCH Tibems.GetExceptionOnFTSwitch on page 206
Tibems.SetExceptionOnFTSwitch on page 220

PROP_MESSAGE_ENCODING Tibems.GetMessageEncoding on page 207
Tibems.SetMessageEncoding on page 221

PROP_DAEMON_DISPATCHER Tibems.GetSessionDispatcherDaemon on page 213

Tibems.SetSessionDispatcherDaemon on page 226

See Also Tibems.SetProperty on page 223

TIBCO Enterprise Message Service .NET Reference

212 |Chapter 13 Utilities

Tibems.GetReconnectAttempts

Method
Declaration static string GetReconnectAttempts();
Purpose Return the reconnection attempts setting.

Remarks This setting governs all client Connection objects as they attempt to reconnect to
the server after a network disconnect. Its value is a string of the form attempts or
attempts , delay:

® attempts limits the number of times that the connection object attempts to
reestablish a connection to the server. When this property is absent, the
default value is 4. The minimum value is 1.

® delay is the time (in milliseconds) between reconnection attempts. When
absent, the default value is 500. The minimum value is 250.

This method returns the string argument to Tibems.SetReconnectAttempts—
not the numeric value of the setting. If the client has not set a value, this method

returns the null string.

See Also Tibems.SetReconnectAttempts on page 225

TIBCO Enterprise Message Service .NET Reference

Tibems.GetSessionDispatcherDaemon | 213

Tibems.GetSessionDispatcherDaemon
Method

Declaration static bool GetSessionDispatcherDaemon();
Purpose Return the dispatcher thread setting.

Remarks =~ When a program uses asynchronous message consumers (either message listeners
or .NET message event handler delegates), EMS creates internal dispatcher
threads for each Session that has at least one asynchronous message consumer.
When this setting is true, those dispatcher threads are daemon threads; when
false (the default) they are not daemon threads.

NET The .NET Compact Framework does not support daemon threads. This call
Compact always returns false.
Framework

See Also Tibems.SetSessionDispatcherDaemon on page 226

TIBCO Enterprise Message Service .NET Reference

214 |Chapter 13 Utilities

Tibems.GetSocketReceiveBufferSize

Method
Declaration static int GetSocketReceiveBufferSize();
Purpose Return the size of socket receive buffers.
Remarks ~ When set, this value overrides the operating system’s default for the size of
receive buffers associated with sockets that the client uses for connections to the

server. (Some operating systems do not allow you to override the default size.)

See Also Tibems.SetSocketReceiveBufferSize on page 227

TIBCO Enterprise Message Service .NET Reference

Tibems.GetSocketSendBufferSize | 215

Tibems.GetSocketSendBufferSize
Method

Declaration static int GetSocketSendBufferSize();
Purpose Return the size of socket send buffers.
Remarks ~ When set, this value overrides the operating system’s default for the size of send
buffers associated with sockets that the client uses for connections to the server.

(Some operating systems do not allow you to override the default size.)

See Also Tibems.SetSocketSendBufferSize on page 228

TIBCO Enterprise Message Service .NET Reference

216 |Chapter 13 Utilities

Tibems.MakeWriteable
Method

Declaration static void MakeWriteable(
Message message);

Purpose Make a message writeable.

Parameter Description

message Make this message writeable.

See Also MessageNotWriteableException on page 244

TIBCO Enterprise Message Service .NET Reference

Tibems.SetAllowCloselnCallback | 217

Tibems.SetAllowCloselnCallback

Method

Declaration

Purpose

Remarks

static void SetAllowCloseInCallback(
bool allow);

Override a JMS requirement so client callbacks may call close methods.

According to the JMS specification, close methods (that is,
MessageConsumer.Close, Session.Close, Connection. Close) cannot return
while any message callbacks (that is, EMSMessageHandler,
IMessageListener.OnMessage) are running. As a result, a message callback
must not call a close method, lest it cause a deadlock.

This method explicitly overrides this JMS requirement, permitting callbacks to
call close without deadlock (that is, embedded close calls do not wait for callbacks
to return).

Parameter Description

allow When true, EMS overrides the JMS specification.
When false (the default), EMS obeys the JMS specification.
This method replaces the deprecated method SetAllowCallbackInClose.
Obsolete
See Also Tibems.GetAllowCloseInCallback on page 202

TIBCO Enterprise Message Service .NET Reference

218 |Chapter 13 Utilities

Tibems.SetConnectAttempts
Method

Declaration static void SetConnectAttempts(
string specs);

Purpose Modify the connection attempts setting.

Remarks This setting governs all client Connection objects as they attempt to connect to

the server.
Parameter Description
specs Set the connect setting to these specifications. The value must be string of the form

attempts or attempts , delay:

* attempts limits the number of times that the connection object attempts to
establish a connection to the server. When this property is absent, the default
value is 2. The minimum value is 1.

* delay is the time (in milliseconds) between connection attempts. When absent,
the default value is 500. The minimum value is 250.

See Also Tibems.GetConnectAttempts on page 204

TIBCO Enterprise Message Service .NET Reference

Tibems.SetEncoding

Tibems.SetEncoding

Method

Declaration

Purpose

Remarks

static void SetEncoding(
string encodingName);

Set the global character encoding for messages.

Programs can override the global encoding for individual messages. When
neither a global nor an individual message encoding has been set, then EMS
encodes the strings of an outbound message using the default UTF-8 encoding.

This encoding applies to all strings in message bodies (names and values), and
properties (names and values). It does not apply to header names nor values. The
methods BytesMessage.ReadUTF and BytesMessage . WriteUTF are exempt from
global and individual encoding settings.

Parameter Description

encodingName Set this global encoding.
For a list of standard encoding names, see www.iana.org.
See Also BytesMessage—Read on page 37

BytesMessage—Write on page 40
Tibems.GetEncoding on page 205
Tibems.GetMessageEncoding on page 207
Tibems.SetMessageEncoding on page 221

TIBCO Enterprise Message Service .NET Reference

219

220 |Chapter 13 Utilities

Tibems.SetExceptionOnFTSwitch
Method

Declaration static void SetExceptionOnFTSwitch(
bool callExceptionlListener);

Purpose Modify the fault tolerance exception setting.

Remarks This setting determines exception behavior when the client successfully switches
to a different server (fault-tolerant failover).

Parameter Description

callExceptionListener When true, the connection’s ExceptionlListener catches an
EMSException, which contains the name of the new server.

When false, fault-tolerant failover does not trigger an exception in the
client.

See Also IExceptionListener on page 129
Tibems.GetExceptionOnFTSwitch on page 206

TIBCO Enterprise Message Service .NET Reference

Tibems.SetMessageEncoding

Tibems.SetMessageEncoding

Method

Declaration

Purpose

Remarks

static void SetMessageEncoding(
Message message
string encodingName);

Set the character encoding for an individual message.

This encoding for an individual message overrides the global encoding. When
neither a global nor an individual message encoding has been set, then EMS
encodes the strings of an outbound message using the default UTF-8 encoding.

This encoding applies to all strings in message bodies (names and values), and
properties (names and values). It does not apply to header names nor values. The
methods BytesMessage .ReadUTF and BytesMessage .WriteUTF are exempt from
global and individual encoding settings.

Parameter Description

message Set the encoding for this message.
encodingName Set this encoding.
For a list of standard encoding names, see www.iana.org.
See Also BytesMessage—Read on page 37

BytesMessage—Write on page 40
Tibems.GetEncoding on page 205
Tibems.SetEncoding on page 219
Tibems.GetMessageEncoding on page 207

TIBCO Enterprise Message Service .NET Reference

221

222 |Chapter 13 Utilities

Tibems.SetPinglinterval
Method

Declaration static void SetPingInterval(
int seconds);

Purpose Set the interval at which the client tests network connectivity.

Remarks Clients test network connectivity by sending ping requests to the server at regular
intervals. This method sets that interval (in seconds). If your program calls this
method, it must do so before creating its first Connection object; after creating
that object, this call has no effect.

Parameter Description

seconds Ping at this interval (in seconds).

Zero is a special value that disables ping testing.

See Also Tibems.GetPingInterval on page 209

TIBCO Enterprise Message Service .NET Reference

Tibems.SetProperty

Tibems.SetProperty
Method

Declaration static void SetProperty(
string key,
object val);

Purpose Modify a property value.
Remarks In .NET, methods exist to get and set the properties. SetProperty provides an

alternate way to set property values, which is consistent with the EMS Java API
(for easy porting to .NET).

Parameter Description

key Set the value associated with this property name.

You may supply any of the constants listed in the table below. The constants
are defined as static fields of Tibems. The values of those constants are the
actual property names.

value Set the property to this value.

(Sheet 1 of 2)

Property Constant Corresponding Methods

PROP_SOCKET_RECEIVE_SIZE Tibems.GetSocketReceiveBufferSize on page 214

Tibems.SetSocketReceiveBufferSize on page 227

PROP_SOCKET SEND SIZE Tibems.GetSocketSendBufferSize on page 215

Tibems.SetSocketSendBufferSize on page 228

PROP_CONNECTION_ATTEMPTS Tibems.GetConnectAttempts on page 204

Tibems.SetConnectAttempts

PROP_RECONNECTION_ATTEMPTS Tibems.GetReconnectAttempts on page 212

Tibems.SetReconnectAttempts on page 225

PROP_CLOSE_IN_CALLBACK Tibems.GetAllowCloseInCallback on page 202

Tibems.SetAllowCloseInCallback on page 217

TIBCO Enterprise Message Service .NET Reference

223

224 | Chapter 13 Utilities

(Sheet 2 of 2)

Property Constant Corresponding Methods

PROP_PING_INTERVAL Tibems.GetPingInterval on page 209
Tibems.SetPingInterval on page 222

PROP_FT_SWITCH Tibems.GetExceptionOnFTSwitch on page 206
Tibems.SetExceptionOnFTSwitch on page 220

PROP_MESSAGE_ENCODING Tibems.GetMessageEncoding on page 207
Tibems.SetMessageEncoding on page 221

PROP_DAEMON_DISPATCHER Tibems.GetSessionDispatcherDaemon on page 213

Tibems.SetSessionDispatcherDaemon on page 226

See Also Tibems.GetProperty on page 210

TIBCO Enterprise Message Service .NET Reference

Tibems.SetReconnectAttempts | 225

Tibems.SetReconnectAttempts
Method

Declaration static void SetReconnectAttempts(
string specs);

Purpose Modify the reconnection attempts setting.

Remarks This setting governs all client Connection objects as they attempt to reconnect to
the server after a network disconnect.

Parameter Description

specs Set the reconnect setting to these specifications. The value must be string of the
form attempts or attempts , delay:

* attempts limits the number of times that the connection object attempts to
reestablish a connection to the server. When this property is absent, the default
value is 4. The minimum value is 1.

* delay is the time (in milliseconds) between reconnection attempts. When absent,
the default value is 500. The minimum value is 250.

See Also Tibems.GetReconnectAttempts on page 212

TIBCO Enterprise Message Service .NET Reference

226 |Chapter 13 Utilities

Tibems.SetSessionDispatcherDaemon
Method

Declaration static void SetSessionDispatcherDaemon(
bool makeDaemon);

Purpose Set the dispatcher thread setting.

Remarks ~ When a program uses asynchronous message consumers (either message listeners
or .NET message event handler delegates), EMS creates internal dispatcher
threads for each Session that has at least one asynchronous message consumer.
When this setting is true, those dispatcher threads are daemon threads; when
false (the default) they are not daemon threads.

Parameter Description

makeDaemon ® When true, dispatcher threads are daemon threads.

* When false, (the default) they are not daemon threads

NET The .NET Compact Framework does not support daemon threads. This call has
Compact no effect, and returns without error.
Framework

See Also Tibems.GetSessionDispatcherDaemon on page 213

TIBCO Enterprise Message Service .NET Reference

Tibems.SetSocketReceiveBufferSize | 227

Tibems.SetSocketReceiveBufferSize
Method

Declaration static void SetSocketReceiveBufferSize(
int size);

Purpose Set the size of socket receive buffers.

Remarks This value overrides the operating system’s default for the size of receive buffers
associated with sockets that the client uses for connections to the server.

Use this call before creating server connections. This call sets an override buffer
size for new socket buffers; it does not change the size of existing socket buffers.

Parameter Description

size Sockets use receive buffers of this size (in kilobytes).

NET The .NET Compact Framework does not permit changing the default socket
Compact buffer size. This call has no effect, and returns without error.
Framework

See Also Tibems.GetSocketReceiveBufferSize on page 214

TIBCO Enterprise Message Service .NET Reference

228 |Chapter 13 Utilities

Tibems.SetSocketSendBufferSize
Method

Declaration static void SetSocketSendBufferSize(
int size);

Purpose Set the size of socket send buffers.

Remarks This value overrides the operating system’s default for the size of send buffers
associated with sockets that the client uses for connections to the server.

Use this call before creating server connections. This call sets an override buffer
size for new socket buffers; it does not change the size of existing socket buffers.

Parameter Description

size Sockets use send bulffers of this size (in kilobytes).

NET The .NET Compact Framework does not permit changing the default socket
Compact buffer size. This call has no effect, and returns without error.
Framework

See Also Tibems.GetSocketSendBufferSize on page 215

TIBCO Enterprise Message Service .NET Reference

Chapter 14

Topics

Exception

This chapter presents exceptions related to EMS.

e EMSException, page 230

* AuthenticationException, page 232

* CannotProceedException, page 233

o CommunicationException, page 234

* ConfigurationException, page 235

o lllegalStateException, page 236

o InvalidClientIDException, page 237

e InvalidDestinationException, page 238

* InvalidNameException, page 239

* [InvalidSelectorException, page 240

* MessageEOFException, page 241

® MessageFormatException, page 242

* MessageNotReadableException, page 243
® MessageNotWriteableException, page 244
* NameNotFoundException, page 245

* NamingException, page 246

e ResourceAllocationException, page 247

® SecurityException, page 248

o ServiceUnavailableException, page 249

e TransactionInProgressException, page 250

e TransactionRolledBackException, page 251

TIBCO Enterprise Message Service .NET Reference

229

230 |Chapter 14 Exception

EMSException
Class

Declaration class EMSException : System.Exception
Purpose Root of exceptions specific to EMS.
Origin ~ Corresponds to JMSException in JMS.

Remarks EMS methods throw instances of this class and its subclasses.

Member Description

Properties

ErrorCode string {get;}
When an exception results from a server error, this property holds the
server’s error code.

LinkedException System.Exception {get; set;}

When an EMS exception results from a deeper problem, this linked
exception details that problem.

Subclasses EMSException
TIllegalStateException
InvalidClientIDException
InvalidDestinationException
InvalidSelectorException
MessageEOFException
MessageFormatException
MessageNotReadableException
MessageNotWriteableException
NamingException

AuthenticationException
CannotProceedException
CommunicationException
ConfigurationException
InvalidNameException
NameNotFoundException
ServiceUnavailableException
ResourceAllocationException
SecurityException
TransactionInProgressException
TransactionRolledBackException

TIBCO Enterprise Message Service .NET Reference

EMSException | 231

Constructors EMSException (
string reason);

EMSException (

string reason,
string errorCode);

TIBCO Enterprise Message Service .NET Reference

232 |Chapter 14 Exception

AuthenticationException

Class
Declaration class AuthenticationException : NamingException
Purpose Invalid authentication or insufficient privileges for a lookup request.

See Also LookupContext on page 182

TIBCO Enterprise Message Service .NET Reference

CannotProceedException | 233

CannotProceedException
Class

Declaration class CannotProceedException : NamingException
Purpose Insufficient information to resolve a lookup request.

Remarks A destination lookup request found both a queue and a topic with the specified
name. To resolve this situation, specify the destination name in one of these forms:

® S$topic:<topic-name>

® $queue:<queue-name>

See Also LookupContext on page 182

TIBCO Enterprise Message Service .NET Reference

234 |Chapter 14 Exception

CommunicationException

Class
Declaration class CommunicationException : NamingException
Purpose A lookup request returned bad data.

Remarks This exception could indicate a version mismatch between the client and
tibemsd.

See Also LookupContext on page 182

TIBCO Enterprise Message Service .NET Reference

ConfigurationException | 235

ConfigurationException
Class

Declaration class ConfigurationException : NamingException
Purpose Configuration error associated with a lookup context object.

Remarks ~ When the client initialized the lookup context, some parameter values were
missing or invalid.

See Also LookupContext on page 182

TIBCO Enterprise Message Service .NET Reference

236 |Chapter 14 Exception

lllegalStateException

Class
Declaration class IllegalStateException : EMSException
Purpose A method call or server request occurred in an inappropriate context.
Origin JMS.

Remarks For example, Session.Commit throws this exception when the session is
non-transactional.

TIBCO Enterprise Message Service .NET Reference

InvalidClientIDException | 237

InvalidClientIDException
Class

Declaration class InvalidClientIDException : EMSException
Purpose The provider rejects the connection’s client ID.
Origin JMS.

Remarks Setting a connection’s client ID to an invalid or duplicate value results in this
exception. (A duplicate value is one that is already in use by another connection.)

TIBCO Enterprise Message Service .NET Reference

238 |Chapter 14 Exception

InvalidDestinationException

Class
Declaration class InvalidDestinationException

Purpose tibemsd cannot locate the destination.

Origin JMS.

TIBCO Enterprise Message Service .NET Reference

EMSException

InvalidNameException | 239

InvalidNameException
Class

Declaration class InvalidNameException : NamingException
Purpose Inalookup request, the name has incorrect syntax.

Remarks ~ The most common syntax error is a prefix other than tibjmsnaming:// (or a
misspelling).

See Also LookupContext on page 182

TIBCO Enterprise Message Service .NET Reference

240 |Chapter 14 Exception

InvalidSelectorException

Class
Declaration class InvalidSelectorException : EMSException
Purpose The client passed a message selector with invalid syntax.
Origin JMS.

See Also Message Selectors on page 20

TIBCO Enterprise Message Service .NET Reference

MessageEOFException | 241

MessageEOFEXxception
Class

Declaration class MessageEOFException : EMSException
Purpose The data stream within a message ended unexpectedly.
Origin JMS.
Remarks BytesMessage contains a stream of bytes. StreamMessage contains a stream of

characters. If any of their read methods detects the end of the stream
unexpectedly, it throws this exception.

TIBCO Enterprise Message Service .NET Reference

242 |Chapter 14 Exception

MessageFormatException

Class

Declaration class MessageFormatException : EMSException
Purpose Datatype mismatch.
Origin JMS.
Remarks For example:

¢ A read method cannot read the data with the specified type.

e A write method cannot store the data in the message or property because the
data has the wrong type.

TIBCO Enterprise Message Service .NET Reference

MessageNotReadableException | 243

MessageNotReadableException
Class

Declaration class MessageNotReadableException : EMSException
Purpose Attempt to read from a message in write-only mode.

Origin JMS.

TIBCO Enterprise Message Service .NET Reference

244 |Chapter 14 Exception

MessageNotWriteableException

Class
Declaration class MessageNotWriteableException : EMSException
Purpose Attempt to write to a message in read-only mode.
Origin JMS.

See Also Tibems.MakeWriteable on page 216

TIBCO Enterprise Message Service .NET Reference

NameNotFoundException | 245

NameNotFoundException
Class

Declaration class NameNotFoundException : NamingException
Purpose The name lookup repository cannot find a name; the name is not bound.

See Also LookupContext on page 182

TIBCO Enterprise Message Service .NET Reference

246 |Chapter 14 Exception

NamingException
Class

Declaration class NamingException : EMSException

Purpose Root of exceptions related to name lookup requests.

Member Description

Properties

RootCause System.Exception {get; set;}

When a naming exception results from a more general problem, this
exception details that problem.

Remarks Members of LookupContext throw instances of this class and its subclasses.

Subclasses NamingException
AuthenticationException
CannotProceedException
CommunicationException
ConfigurationException
InvalidNameException
NameNotFoundException
ServiceUnavailableException

See Also LookupContext on page 182

TIBCO Enterprise Message Service .NET Reference

ResourceAllocationException | 247

ResourceAllocationException
Class

Declaration class ResourceAllocationException : EMSException
Purpose Required resources are not available.

Origin JMS.

TIBCO Enterprise Message Service .NET Reference

248 |Chapter 14 Exception

SecurityException

Class
Declaration class SecurityException : EMSException
Purpose The method cannot complete because of a security restriction.
Origin JMS.

Remarks For example, the provider rejects a user or the user’s authentication.

TIBCO Enterprise Message Service .NET Reference

ServiceUnavailableException | 249

ServiceUnavailableException
Class

Declaration class ServiceUnavailableException : NamingException
Purpose A lookup request failed because the client could not connect to the server.

See Also LookupContext on page 182

TIBCO Enterprise Message Service .NET Reference

250 |Chapter 14 Exception

TransactionIinProgressException

Class
Declaration class TransactionInProgressException : EMSException
Purpose Reserved for future use.
Origin JMS.
Remarks ~ When a session uses an XA transaction manager, the XA resource is the correct

locus for all commit and rollback requests. Local commit or rollback calls are not
permitted, and throw this exception.

TIBCO Enterprise Message Service .NET Reference

TransactionRolledBackException | 251

TransactionRolledBackException
Class

Declaration class TransactionRolledBackException : EMSException
Purpose An attempt to commit a transaction resulted in rollback.

Origin JMS.

TIBCO Enterprise Message Service .NET Reference

252 | Chapter 14 Exception

TIBCO Enterprise Message Service .NET Reference

Index

A

Acknowledge 27
assembly 7
AuthenticationException 232

B

body types, message 11
BodyLength 36
BytesMessage 36
Read methods 37
ReadBytes 39
Reset 43
Write methods 40
WriteBytes 42

C

cache, assembly 7

CalculateMessageSize 200

CannotProceedException 233

character encoding 4, 205, 207, 219, 221

checklist, programmer’s 7

ClearBody 28

ClearProperties 29

Clone 30

Close
Connection 117
MessageConsumer 78
MessageProducer 93
QueueBrowser 176
QueueRequestor 106
Session 148
TopicRequestor 110

253

Commit 149
CommunicationException 234
Compact Framework 5
compression 3
ConfigurationException 235
Connection 114

Close 117

CreateSession 118

Start 119

Stop 120
ConnectionConsumer (not supported) 3
ConnectionFactory 132

constructor 134

CreateConnection 135
ConnectionMetaData 121
conversion, data type 23
CreateBrowser 150
CreateBytesMessage 151
CreateConnection 135
CreateConsumer 152
CreateDurableSubscriber 153
CreateFromBytes 201
CreateMapMessage 155
CreateObjectMessage 156
CreateProducer 157
CreateQueue 158
CreateQueueConnection 138
CreateQueueSession 123
CreateSession 118
CreateStreamMessage 159
CreateTemporaryQueue 160
CreateTemporaryTopic 161
CreateTextMessage 162
CreateTopic 163
CreateTopicConnection 140
CreateTopicSession 125
customer support xiv

TIBCO Enterprise Message Service .NET Reference

254 | Index

D

daemon threads 3
data type conversion 23
Delete
TemporaryQueue 69
TemporaryTopic 71
DeliveryMode 190
Deserialize 192
Destination 65
overview 62
durable subscription
unsubscribe 167
dynamic destination 62

E

EMSException 230
EMSExceptionEventArgs 127
constructor 128
EMSExceptionHandler 126
EMSMessageEventArgs 84
constructor 85
Message 84
EMSMessageHandler 83
encoding, character 4, 205, 207, 219, 221
exceptions 229

F

FactoryLoadBalanceMetric 136
fault tolerance

ActiveURL 115

failover exceptions 206, 220
FieldCount

MapMessage 44

StreamMessage 52

TIBCO Enterprise Message Service .NET Reference

G

Get

MapMessage 46

message properties 32
GetAllowCloseInCallback 202
GetAsBytes 203
GetConnectAttempts 204
GetDeliveryModeName 31
GetEncoding 205
GetEnumerator 177
GetExceptionOnFTSwitch 206
GetMessageBodySize 208
GetMessageEncoding 207
GetMessageHeadersSize 208
GetMessageSize 208
GetPingInterval 209
GetProperty, Tibems 210
GetReconnectAttempts 212
GetSessionDispatcherDaemon 213
GetSocketReceiveBufferSize 214
GetSocketSendBufferSize 215
global assembly cache 7

H

headers, message 12

IEMSSerialziable 191
Deserialize 192
Serialize 193
IExceptionListener 129
OnException 130
IllegalStateException 236
IMessageListener 86
OnMessage 87
InvalidClientIDException 237
InvalidDestinationException 238
InvalidNameException 239

InvalidSelectorException 240
ItemExists 47

L

Lookup 186
LookupContext 182
AddSettings
AddSettings 185
constructor 184
Lookup 186
RemoveSettings 187

M

MakeWriteable 216

MapMessage 44
FieldCount 44
Get methods 46
ItemExists 47
MapNames 44
set methods 48
SetBytes 49

MapNames 44

Message 24
Acknowledge 27
body types 11
BodyLength 36
ClearBody 28
ClearProperties 29
Clone 30
EMSMessageEventArgs 84
get property methods 32
GetDeliveryModeName 31
headers 12
parts of 10
properties 17
PropertyExists 33
set property methods 34
ToString 35

message

selectors 20
MessageConsumer 76

Close 78

MessageHandler 76

MessageListener 76

MessageSelector 77

Receive 79

ReceiveNoWait 80
MessageDeliveryMode 194
MessageEOFException 241
MessageFormatException 242
MessageHandler 76
MessageListener 76
MessageNotReadableException 243
MessageNotWriteableException 244
MessageProducer 90

Close 93

Send 94
MessageProducer.Close 93
MessageProducer.Send 94
MessageSelector 77
MoveNext 178

N

NameNotFoundException 245
NamingException 246

NET Compact Framework 5
NoLocal 82

O

object serialization 3
ObjectMessage 50
constructor 51
TheObject 50
OnException 130
OnMessage 87

TIBCO Enterprise Message Service .NET Reference

Index

255

256 | Index

P ReadBytes
BytesMessage 39
property, message 17 StreamMessage 55
get 32 read-only 28, 43, 56, 201, 244
set 34 Receive 79
PropertyExists 33 ReceiveNoWait 80
Publish 100 Recover 164
RemoveSettings 187
Request
QueueRequestor 107
Q TopicRequestor 111
request 12
Queue 66 Reset
constructor 67 BytesMessage 43
QueueName 66 QueueBrowser 179
QueueReceiver 81 StreamMessage 56
QueueBrowser 174 ResourceAllocationException 247
Close 176 Rollback 165
GetEnumerator 177 Run (obsolete) 166
MoveNext 178
Reset 179
QueueConnection 122
CreateQueueSession 123 S
QueueConnectionFactory 137
CreateQueueConnection 138 SecurityException 248
QueueName 66 selectors, message 20
QueueReceiver 81 Send
Queue 81 MessageProducer 94
QueueRequestor 104 QueueSender 97
Close 106 serializable object interface 191
constructor 105 serialization 3
Request 107 Serialize 193
QueueSender 96 ServerSession (not supported) 3
Send 97 ServerSessionPool (not supported) 3
QueueSender.Send 97 ServiceUnavailableException 249

QueueSession 170

R

Read
BytesMessage 37
StreamMethod 54

TIBCO Enterprise Message Service .NET Reference

Session 142

Close 148

Commit 149

CreateBrowser 150

CreateBytesMessage 151

CreateConsumer 152

CreateDurableSubscriber 153

CreateMapMessage 155

CreateObjectMessage 156

CreateProducer 157

CreateQueue 158

CreateStreamMessage 159

CreateTemporaryQueue 160

CreateTemporaryTopic 161

CreateTextMessage 162

CreateTopic 163

Recover 164

Rollback 165

Run (obsolete) 166

Unsubscribe 167
SessionMode 168
Set

MapMessage 48

message property 34
SetAllowCloselnCallback 217
SetBytes 49
SetConnectAttempts 218
SetEncoding 219
SetExceptionOnFTSwitch 220
SetMessageEncoding 221
SetPingInterval 222
SetProperty, Tibems 223
SetReconnectAttempts 225

SetSessionDispatcherDaemon 226

SetSocketReceiveBufferSize 227
SetSocketSendBufferSize 228
SSL 3

Start 119

static destination 62

Stop 120

StreamMessage 52
FieldCount 52
Read methods 54
ReadBytes 55
Reset 56
Write methods 57
WriteBytes 58
string and character encoding 4
support, contacting xiv

T

technical support xiv

temporary destination 62

TemporaryQueue 68
Delete 69

TemporaryTopic 70
Delete 71

Text 59

TextMessage 59
constructor 60
Text 59

TheObject 50

TIBCO Enterprise Message Service .NET Reference

Index

257

Index

Tibems 195
CalculateMessageSize 200
CreateFromBytes 201
GetAllowCloseInCallback 202
GetAsBytes 203
GetConnectAttempts 204
GetEncoding 205
GetExceptionOnFTSwitch 206
GetMessageBodySize 208
GetMessageEncoding 207
GetMessageHeadersSize 208
GetMessageSize 208
GetPinglInterval 209
GetProperty 210
GetReconnectAttempts 212
GetSessionDispatcherDaemon 213
GetSocketReceiveBufferSize 214
GetSocketSendBufferSize 215
MakeWriteable 216
SetAllowCloseInCallback 217
SetConnectAttempts 218
SetEncoding 219
SetExceptionOnFTSwitch 220
SetMessageEncoding 221
SetPingInterval 222
SetProperty 223
SetReconnectAttempts 225
SetSessionDispatcherDaemon 226
SetSocketReceiveBufferSize 227
SetSocketSendBufferSize 228

tibemsd 7,132, 181

Topic 72
constructor 73
TopicName 72
TopicSubscriber 82

TopicConnection 124
CreateTopicSession 125

TopicConnectionFactory 139
CreateTopicConnection 140

TopicName 72

TopicPublisher 99
Publish 100

TopicPublisher.Publish 100

TIBCO Enterprise Message Service .NET Reference

TopicRequestor 108

Close 110

constructor 109

Request 111
TopicSession 171
TopicSubscriber 82

NoLocal 82

Topic 82
ToString 35
TransactionInProgressException 250
TransactionRolledBackException 251
translation, character encoding 4
type conversion 23

U

Unicode 4
Unsubscribe 167

w

Write
BytesMessage 40
StreamMessage 57
WriteBytes
BytesMessage 42
StreamMessage 58

X

XA (not supported) 3

	TIBCO Enterprise Message Service™
	Contents
	Tables
	Preface
	Related Documentation
	TIBCO Enterprise Message Service Documentation
	Other TIBCO Product Documentation
	Third Party Documentation

	How to Contact TIBCO Customer Support

	Chapter�1 Introduction
	Overview
	Excluded Features and Restrictions
	Object Serialization

	Strings and Character Encodings
	.NET Compact Framework (CF)

	Chapter�2 Programmer’s Checklist
	Install
	Code
	Compile
	Run

	Chapter�3 Messages
	Parts of a Message
	Body Types
	Headers
	Properties
	Setting Message Properties
	EMS Properties
	JMS Properties

	Message Selectors
	Data Type Conversion
	Message
	Message.Acknowledge
	Message.ClearBody
	Message.ClearProperties
	Message.Clone
	Message.GetDeliveryModeName
	Message—Get Properties
	Message.PropertyExists
	Message—Set Properties
	Message.ToString

	BytesMessage
	BytesMessage—Read
	BytesMessage.ReadBytes
	BytesMessage—Write
	BytesMessage.WriteBytes
	BytesMessage.Reset

	MapMessage
	MapMessage—Get
	MapMessage.ItemExists
	MapMessage—Set
	MapMessage.SetBytes

	ObjectMessage
	ObjectMessage

	StreamMessage
	StreamMessage—Read
	StreamMessage.ReadBytes
	StreamMessage.Reset
	StreamMessage—Write
	StreamMessage.WriteBytes

	TextMessage
	TextMessage

	Chapter�4 Destination
	Destination Overview
	Destination
	Queue
	Queue

	TemporaryQueue
	TemporaryQueue.Delete

	TemporaryTopic
	TemporaryTopic.Delete

	Topic
	Topic

	Chapter�5 Consumer
	MessageConsumer
	MessageConsumer.Close
	MessageConsumer.Receive
	MessageConsumer.ReceiveNoWait

	QueueReceiver
	TopicSubscriber
	EMSMessageHandler
	EMSMessageEventArgs
	EMSMessageEventArgs

	IMessageListener
	IMessageListener.OnMessage

	Chapter�6 Producer
	MessageProducer
	MessageProducer.Close
	MessageProducer.Send

	QueueSender
	QueueSender.Send

	TopicPublisher
	TopicPublisher.Publish

	Chapter�7 Requestor
	QueueRequestor
	QueueRequestor
	QueueRequestor.Close
	QueueRequestor.Request

	TopicRequestor
	TopicRequestor
	TopicRequestor.Close
	TopicRequestor.Request

	Chapter�8 Connection
	Connection
	Connection.Close
	Connection.CreateSession
	Connection.Start
	Connection.Stop

	ConnectionMetaData
	QueueConnection
	QueueConnection.CreateQueueSession

	TopicConnection
	TopicConnection.CreateTopicSession

	EMSExceptionHandler
	EMSExceptionEventArgs
	EMSExceptionEventArgs

	IExceptionListener
	IExceptionListener.OnException

	Chapter�9 Connection Factory
	ConnectionFactory
	ConnectionFactory
	ConnectionFactory.CreateConnection

	FactoryLoadBalanceMetric
	QueueConnectionFactory
	QueueConnectionFactory.CreateQueueConnection

	TopicConnectionFactory
	TopicConnectionFactory.CreateTopicConnection

	Chapter�10 Session
	Session
	Session.Close
	Session.Commit
	Session.CreateBrowser
	Session.CreateBytesMessage
	Session.CreateConsumer
	Session.CreateDurableSubscriber
	Session.CreateMapMessage
	Session.CreateObjectMessage
	Session.CreateProducer
	Session.CreateQueue
	Session.CreateStreamMessage
	Session.CreateTemporaryQueue
	Session.CreateTemporaryTopic
	Session.CreateTextMessage
	Session.CreateTopic
	Session.Recover
	Session.Rollback
	Session.Run
	Session.Unsubscribe

	SessionMode
	QueueSession
	TopicSession

	Chapter�11 Queue Browser
	QueueBrowser
	QueueBrowser.Close
	QueueBrowser.GetEnumerator
	QueueBrowser.MoveNext
	QueueBrowser.Reset

	Chapter�12 Name Server Lookup
	LookupContext
	LookupContext
	LookupContext.AddSettings
	LookupContext.Lookup
	LookupContext.RemoveSettings

	Chapter�13 Utilities
	DeliveryMode
	IEMSSerialziable
	IEMSSerialziable.Deserialize
	IEMSSerialziable.Serialize

	MessageDeliveryMode
	Tibems
	Tibems.CalculateMessageSize
	Tibems.CreateFromBytes
	Tibems.GetAllowCloseInCallback
	Tibems.GetAsBytes
	Tibems.GetConnectAttempts
	Tibems.GetEncoding
	Tibems.GetExceptionOnFTSwitch
	Tibems.GetMessageEncoding
	Tibems.GetMessageSize
	Tibems.GetPingInterval
	Tibems.GetProperty
	Tibems.GetReconnectAttempts
	Tibems.GetSessionDispatcherDaemon
	Tibems.GetSocketReceiveBufferSize
	Tibems.GetSocketSendBufferSize
	Tibems.MakeWriteable
	Tibems.SetAllowCloseInCallback
	Tibems.SetConnectAttempts
	Tibems.SetEncoding
	Tibems.SetExceptionOnFTSwitch
	Tibems.SetMessageEncoding
	Tibems.SetPingInterval
	Tibems.SetProperty
	Tibems.SetReconnectAttempts
	Tibems.SetSessionDispatcherDaemon
	Tibems.SetSocketReceiveBufferSize
	Tibems.SetSocketSendBufferSize

	Chapter�14 Exception
	EMSException
	AuthenticationException
	CannotProceedException
	CommunicationException
	ConfigurationException
	IllegalStateException
	InvalidClientIDException
	InvalidDestinationException
	InvalidNameException
	InvalidSelectorException
	MessageEOFException
	MessageFormatException
	MessageNotReadableException
	MessageNotWriteableException
	NameNotFoundException
	NamingException
	ResourceAllocationException
	SecurityException
	ServiceUnavailableException
	TransactionInProgressException
	TransactionRolledBackException

	Index

